Comparative Costs of Overwintering Container-Grown Nursery Stock

By Reed D. Taylor and Merton B. Badenhop*

INTRODUCTION

Abstract

Practically all plants grown in containers as well as fieldgrown plants harvested in the autumn for spring sales in U.S.D.A. Plant Hardiness Zones 5 and 6 suffer damage or death if not protected. Costs of overwintering plant material contribute significantly to the expense of producing nursery products in Northern Plant Hardiness Zones. Nurserymen in the Southern region have not traditionally been as concerned about overwintering plants as nurserymen in the Northern regions. However, losses due to death or damage of plants in the Southern Plant Hardiness Zones when not protected can also be considerable.

OBJECTIVES

The objectives of this study, summaries of which are reported in this paper, were to:

1. Model a series of overwintering systems that would accomodate all species of plants being overwinterea in U.S.D.A. Plant Hardiness Zones 5, 6, 7, and 8.
*Associate Professor, Department of Agricultural Economics and Rural Sociology, Ohio State University, and Professor, Department of Agricultural Economics and Rural Sociology, University of Tennessee.
2. Design physical facilitıes including land areas and structures required to accommodate the identified systems.
3. Develop cost budgets for each of the delineated overwintering systems.

MATERIALS AND METHODS

Data were obtained from wholesale nursery suppliers in the respective areas in 1984. Prices reflect quantities of materials based on container nurseries containing 17 total acres, 350,000 square feet of growing area and 210,000 square feet of overwintering space. Overwintering space included either 156 structureless enclosures, 356 polyhuts, 156 polyhouses, or a combination of the three. It was also assumed that for overwintering, plants would be placed container to container.

Cost budgets did not include ground preparation, graveling, or irrigation fixtures. It was assumed that they should be charged to "grow-on" rather than overwintering costs.

Costs were established for ail factors directiy atこributed to overwintering inciuding management and invested capitai. In economic terms input costs associated with factors of production by owner/operators are often referred to as "opportunity costs" or the income the investment would have received if invested elsewhere. For example, owners could be employed as managers at other nurseries, and money invested in iand, buildings.
irrigation systems, and equipment could have earned interest elsewhere.

Annual costs are normally divided between fixed and variable costs. Fixed costs are those that would have been incurred by a nursery regardless of the level of production. They include sucin items as depreciation, interest on investment, taxes, insurance, general overhead, and interest on general overhead. Variable costa, on the other hand, are directly attributed to the level of production. They include items normally consumed during a given years' production such as chemicals or fertilizers.

Differences in overwintering costs were influenced by both the sophistication of the system and in cost estimating. For the same type of system, cost estimates for overhead and hourly labor were the main reasons for higher costs in Zones 5 and 6.

For this study, general overhead for Zones 5 and 6 were assessed by taking the figure 595,025 developed in 1982 for an earlier study (1) using figures for the same sized nursery and inflating it by 10% to 5104,527 . For Hardiness Zones 7 and 8 the figure $559,286, ~ c a l c u l a t e d ~ i n ~ 1982$ was in土iated by 10% to 565,215 (2). Twenty-five percent of tnese figures (525.232 for Zones 5 and 6 and 516,304 for Zones 7 and 8) were assigned to overwintering. General overhead costs make up a major portion of a nurseries overwintering fixed costs. These overhead costs can be classified as: utilities, licenses and bonds, advertising and printing, insurance for personnel, travel, protessional fees, administrative and management, and miscellaneous.

Structureless systems. Structureless systems incur general overhead plus variable costs. For a $14^{\prime} \times 96^{\prime}$ enclosure in Zones 5 and 6 totai annual costs ranged from $\$ 333.46$ where plants are simply consolidated without additional protection, to $\$ 534.92$ where plants are consoildated and surrounded by baies of straw (Tabie 1). On a per sq. ft. basis the costs ranged from 25 to 40 cents; per one-gailon container from 8 to 14 cents; per twogallon container from 15 to 24 cents; and per three-galion container from 22 to 35 cents (Table 2). In Zones 7 and 8 costs per enclosure ranged from $\$ 225.11$ to $\$ 379.58$ (Table 1). On a per sq. ft. basis, costs ranged from 17 to 28 cents; per one-galion container from 6 to 10 cents; per two-gallon container from 10 to 17 cents; and per three-gailon container from 15 to 25 cents (Table 2).

Poiynut gysiems. It was estimated that it would cost s120.24 to construct a $6^{\prime} \times 96^{\prime}$ polyhut in Zones 5 and 6 and 595.95 in Zones 7 and 8 . In Zones 5 and 6 annual fixed costs on a per polyhut basis were estimated at $\$ 109.61$ and $\$ 74.07$ for Zones 7 and 8.

Total annuai costs of overwintering piants in poiynuts differentiated by Zones are shown in Table 1. In Zones 5 and $\overline{0}$ cosis per polyhut ranged from $\$ 246.80$ where piants were just placed in polyhuts without additional protection to $\$ 286.61$ where plants were directiy covered with both a thermai bianket and one layer of poiyethylene (Table 1). On a per sq. ft. basis costs ranged from 43 to 50 cents; per one-gallon container from 15 to

17 cents; per two-gallon container from 25 to 29 cents; and per three-galion container from 38 to 44 cents (Table 2). In Zones 7 and 8 costs per polyhut were $\$ 182.24$ (Table 1). On a per sq. ft. basis the cost was 32 cents; per one-gallon container 11 cents; per two-galion container 19 cents; and per three gailon container 28 cents (Table 2).

Polyhouse - single cover sytems. Construction costs for a 14' x 96' polyhouse covered with a single layer of polyethylene were estimated to be $\$ 1,131.58$ for Zones 5 and 6 and $\$ 1,013.00$ for Zones 7 and 8. In Zones 5 and 6 annual fixed costs on a per polyhouse basis were estimated at 5487.28 and for Zones 7 and 8 at $\$ 387.38$.

Total annual costs of overwintering plants in polyhouses covered with a single layer of polyethylene are shown in Tabie 1. In Zones 5 and 6 they ranged from $\$ 751.76$ where plants are consolidated within the polyhouse, but with no additional covering, to $\$ 815.08$ where plants were covered with both a thermal blanket and one layer of polyethylene. On a per sq. ft. basis costs ranged from 56 to 61 cents; per one-galion container from 22 to 24 cents: per two-gallon container from 38 to 41 cents; and per chree-galion container from 57 to $6 i$ cents (Tabie 2). In Zones 7 and 8 few nurseries use overwintering protection more sophisticated than a polyhouse covered with a single layer of polyethylene and without additional interior plant protection. Costs for this type of system were $\$ 601.55$ (Table i). on a per sq. ft. basis. cost was 45 cents; per one-gallon container 17

SUMMARY

Costs of 18 different overwintering systems were analyzed. Sixteen systems were considered to be used on a regular basis by nurserymen in U.S.D.A. Plant Hardiness Zones 5 and 6 , and eignt in Zones 7 and 8. Total annual costs per sq. ft. varied from 25 to 92 cents in Zones 5 and 6 and from 17 to 45 cents in Zones 7 and 8. In Zones 5 and 6 they varied from 25 to 40 cents for structureless systems, from 43 to 50 cents in polynuts, from 56 to 61 cents in polyhouses covered a single layer of polyethyiene, from 60 to 65 cents in polyhouses covered with air infiated polyethylene, and were 92 cents in a heated, air inflated poiyhouse. Totai annual sq. ft. costs for Zones 7 and 8 varıed from 17 to 28 cents in structureless systems, were 32 cents in polyhuts, and were 45 cents in polyhouses covered with a singie layer of polyehtylene. Cost differentials for similar overwintering systems were due primarily to higher overhead and hourly labor costs in Zones 5 and 6 as compared with Zones 7 and 8. In general, overwintering costs varied directly with the degree of protection desired. Most plant species usually require more overwintering protection in northern than in sourtnern Hardiness Zones. In some instances it may cost from 50 to 100% more to overwinter a plant in Zone 5 and 6 as compared with Zones 7 and 8.

IMPLICATIONS

If the cost of consolidating plants in a structureless system is considered the simplest and least expensive system, the costs that were generated will allow the nurseryman to anaiyze costs required for further protection. The basis includes the portion of overwintering overhead as well as direct costs associated with the simplest system. For example, the basic cost of overwintering a one-gaiion container in Zones 5 and 6 would be 8 cents. One further method of analysis would determine the added costs of going from the simplest system to each of the more sophisticated classifications. To go from the basis, in Zones 5 and 6, to a polyhut would cost an additional 7 cents per onegallon container; to a single layer polyhouse, 14 cents; to an air infilated poiynouse, 15 cents; to an air infilated and heated polynouse, 28 cents. Starting with the simplest system (no additionai covering of plants) in a classification, $1 t$ would cost from 1 to 2 cents more per one-galion container to cover plants with poiyethylene, and an additionai 1 to 2 cents to add a thermal blanket. While it was fairly expensive to add protection Dy moving up to a more sopnisticated ciassification (excep=ion would be going from a singie layer to an air inflaこed polyhouse), it was relativeiy inexpensive to add protection within a clasgification by covering plants directly with either last years' polyethyiene, a tnermal bianket, or both. It shouid also be noted that all costs were based on container to container piacement for overwintering. This is not aiways possibie for ali
piant types, particularly older, or larger plants. Where plant to plant placement is used more space will be required, hence costs will also be higher.

LITERATURE CITED

1. Badenhop, M.B. and T.D. Phillips. 1983. Costs of Producing and Marketing Container-Grown Woody Landscape plants: The Pfitzer Juniper. Southern Coop. Ser. Bull 299.
2. Taylor, Reed D., Harold H. Kneen, David E. Hahn and Eiton M. Smith. 1983. Costs of Establishing and Operating Container Nurseries Differentiated by Size of Firm and Species of Plant in U.S.D.A. Climatic Zone Six. Southern Coop. Series Bull. 301.

TABLE 1.--Sumary of Annual Total Costs (Dollars) of Overwintering Nursery Plants Differentiated by System and U.S.D.A. Plant Hardiness Zone.
U.S.D.A. Plant Hardiness Zone

System	5\&6	$7 \& 8$
1. Plants consolidated - no covering or wrapping	333.46	225.11
2. Plants consolidated-surrounded with lined craft paper	NA	238.76
3. Plants consolidated - surrounded with bales of straw	534.92	379.58
4. Plants consolidated - covered with one layer of poly film	405.27	291.11
5. Plants consolidated - covered with thermal blanket	NA	291.65
6. Plants consolidated - covered with thermal blanket and poly	447.30	331.21

Polyhut ($6^{\prime} \times 96^{\prime}$)
7. No plant covering
8. Plants covered with 1 layer poly film
9. Plants covered with thermal blanket
246.30
182.24
267.98

NA
286.61

NA

Table 1 Cont.

$$
\text { Polyhouse - Single Cover (} 14^{\prime} \times 96^{\prime} \text {) }
$$

10. No plant covering	751.76	601.55
11. Plants covered with poly film	773.05	NA
12. Plants covered with thermal blanket	807.98	NA
13. Plants covered with thermal blanket	815.08	NA
and poly film		

$$
\text { Polyhouse - Double Cover - Inflated (} 14^{\prime} \times 96^{\prime} \text {) }
$$

14. No plant covering
812.36

NA
15. Plants covered with poly film
833.65

NA
16. Plants covered with thermal blanket
868.59

NA
17. Plants covered with thermal blanket
875.68

NA
and poly film

$$
\text { Polyhouse - Double Cover - Inflated and Heated (} 14^{\prime} \times 96^{\prime} \text {) }
$$

18. No plant covering - Polyhouse heated

1,238.94
NA

TABLE 2.--Summary of Total Annual Costs (Cents) of Overwintering Nursery Plants Differentiated by System, U.S.D.A. Plant Hardiness Zone, Square Foot and Container Size

Polyhut ($6^{\prime} \times 96^{\prime}$) kk

	No plant covering	43	15	25	38	32	11	19	28
8.	Plants covered with 1 layer poly film	47	16	28	41	NA	NA	NA	NA
9.	Plants covered with thermal blanket	50	17	29	44	NA	NA	NA	NA
Polyhouse - Single Cover ($14^{\prime} \times 96^{\prime}$)									
	No plant covering	56	22	38	57	45	17	30	45
11.	Plants covered with poly film	58	22	39	58	NA	NA	NA	NA
12.	Plants covered with thermal blanket	60	23	40	61	NA	NA	NA	NA
13.	Plants covered with thermal blanket	61	24	41	61	NA	NA	N/	$N A$

14.	No plant covering	60	23	41	61	N / A	$N A$	N / A	$N A$
15. Plants covered with poly film	62	24	42	63	N / A	N / A	N / A	NA	
16. Plants covered with thermal blanket	65	25	43	65	N / A	N / A	N / A	NA	
17. Plants covered with thermal blanket	65	25	44	66	N / A	N / A	$N A$	$N A$	

18. No plant covering - Polyhouse heated $\begin{array}{lllllllll} & 92 & 36 & 62 & 93 & \text { NA } & \text { NA } & \text { NA }\end{array}$
*A $14^{\prime} \times 96^{\prime}$ enclosure equals $1344 \mathrm{sq} . \mathrm{ft}$. and would accomodate 3926 1-gal. container5, 2270 2-gal., and 1510 3-gal.
**A $6^{\prime} \times 96^{\prime}$ polyhut equals 576 sq . ft. and would accomodate $16821-\mathrm{gal}$. containers, 972 2-gal., and 647 3-gal.
kktA $14^{\prime} \times 96^{\prime}$ polyhouse equals $1344 \mathrm{sq} . \mathrm{ft}$. and would accomodate 3460 1-gal. containers, 200020 gal ., and 1330 3-gal.
Polyhouses would have a two foot aisle down the center and therefore would not hold as many containers as a container
to container enclosure.
