16 research outputs found

    Summary of the second workshop on liquid argon time projection chamber research and development in the United States

    Get PDF
    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world

    A single amino acid substitution is sufficient to modify the mitogenic properties of the epidermal growth factor receptor to resemble that of gp185erbB-2.

    No full text
    The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regions are responsible for this specificity. Here we describe a genetically engineered EGFR mutant containing a threonine for arginine substitution at position 662 in the EGFR juxtamembrane domain, corresponding to threonine 694 in gp185erbB-2. This mutant, designated EGFRThr662, displayed affinity for EGF binding and catalytic properties that were indistinguishable from those of the wild type EGFR. However, EGFRThr662 behaved much as gp185erbB-2 in a number of bioassays which readily distinguish between the mitogenic effects of EGFR and gp185erbB-2. Moreover, significant differences were detected in the pattern of intracellular proteins phosphorylated on tyrosine in vivo by EGFR and EGFRThr662 in response to EGF. Thus, small differences in the primary sequence of two closely related receptors have dramatic effects on their ability to couple with mitogenic pathways

    Birth weight and complexity are significant factors for the management of hypoplastic left heart syndrome

    No full text
    Classic options for treatment of hypoplastic left heart syndrome include the Norwood procedure (NW) and heart transplantation (HT). Recently off-pump palliative procedures were introduced in the management of these patients. Risk factors influencing the decision between the NW with staged reconstruction or off-pump palliation and HT were assessed. Between January 2002 and January 2006, 69 patients with hypoplastic left heart syndrome were referred for either a NW (n = 33) or HT (n = 36). Patients referred for HT underwent off-pump palliation (catheter-based, n = 20, or surgical hybrid procedures, n = 7) until a donor organ became available: including patent ductus arteriosus stenting (80.6%), atrial septostomy (41.7%), and branch pulmonary artery banding (55.6%). Heart transplantation patients were more complex, based on a higher Aristotle Comprehensive Complexity score calculated at birth (HT 18.8 +/- 2.4 versus NW 17.7 +/- 1.7; p 20) correlated with surgical death with NW (p < 0.01). Noticeably, surgical survival was 85.7% for infants with birth weight of 2.5 kg or greater undergoing NW. Overall survival is similar for hypoplastic left heart syndrome patients referred for the NW or HT. Lower birth weight and higher complexity are risk factors for patients undergoing NW. Off-pump palliation followed by HT or further staged palliation should be considered for these high-risk hypoplastic left heart syndrome patients

    Study protocol: NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC trial): a randomised controlled trial

    Get PDF
    INTRODUCTION: Congenital heart disease (CHD) is a major cause of infant mortality. Many infants with CHD require corrective surgery with most operations requiring cardiopulmonary bypass (CPB). CPB triggers a systemic inflammatory response which is associated with low cardiac output syndrome (LCOS), postoperative morbidity and mortality. Delivery of nitric oxide (NO) into CPB circuits can provide myocardial protection and reduce bypass-induced inflammation, leading to less LCOS and improved recovery. We hypothesised that using NO during CPB increases ventilator-free days (VFD) (the number of days patients spend alive and free from invasive mechanical ventilation up until day 28) compared with standard care. Here, we describe the NITRIC trial protocol. METHODS AND ANALYSIS: The NITRIC trial is a randomised, double-blind, controlled, parallel-group, two-sided superiority trial to be conducted in six paediatric cardiac surgical centres. One thousand three-hundred and twenty infants <2 years of age undergoing cardiac surgery with CPB will be randomly assigned to NO at 20 ppm administered into the CPB oxygenator for the duration of CPB or standard care (no NO) in a 1:1 ratio with stratification by age (<6 and ≄6 weeks), single ventricle physiology (Y/N) and study centre. The primary outcome will be VFD to day 28. Secondary outcomes include a composite of LCOS, need for extracorporeal membrane oxygenation or death within 28 days of surgery; length of stay in intensive care and in hospital; and, healthcare costs. Analyses will be conducted on an intention-to-treat basis. Preplanned secondary analyses will investigate the impact of NO on host inflammatory profiles postsurgery. ETHICS AND DISSEMINATION: The study has ethical approval (HREC/17/QRCH/43, dated 26 April 2017), is registered in the Australian New Zealand Clinical Trials Registry (ACTRN12617000821392) and commenced recruitment in July 2017. The primary manuscript will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ACTRN12617000821392

    The Effects Of Levosimendan And Sodium Nitroprusside Combination On Left Ventricular Functions After Surgical Ventricular Reconstruction In Coronary Artery Bypass Grafting Patients

    No full text
    Objective: The aim of our study was to research the effects of levosimendan (LS) and sodium nitroprusside (SNP) combination on systolic and diastolic ventricular function after coronary artery bypass grafting (CABG) who required endoventricular patch repair (EVPR). Patients and Methods: We studied 70 patients with ischemic dilated cardiomyopathy. LS and SNP combination was administered in 35 patients (study group, SG). In the remaining patients, normal saline solution was given (placebo group, PG). Levosimendan (10”gr/kg) started 4 h prior to operation and we stopped LS before the initiation of extracorporeal circulation (ECC). During the rewarming period, we started again levosimendan (10”gr/kg) in combination with SNP (0.1-0.2 ”gr/kg/min). If mean blood pressure decreased by more than 25% compared with pre-infusion values, for corrected of mean arterial pressure, the volume loading was performed using a 500 ml ringer lactate. Hemodynamic variables, inotrophyc requirement, and laboratory values were recorded. Results: Five patients died (7.14%) post-surgery (one from SG and 4 from PG) due to low cardiac out-put syndrome (LOS). At the postoperative period, cardiac output and stroke volume index was higher in SG (mean±sd;29.1±6.3 vs. 18.4±4.9 mL/min−1/m−2 (P<0.0001)). Stroke volume index (SVI) decreased from 29±10mL/m2 preoperatively to 22±14mL/m2 in the early postoperative period in group 1. This difference was statistically significant (P=0.002). Cardiac index was higher in SG (320.7±37.5 vs. 283.0±83.9 mL/min−1/m−2 (P=0.009)). The postoperative inotrophyc requirement was less in SG (5.6±2.7 vs. 10.4±2.0 mg/kg, P< 0.008), and postoperative cardiac enzyme levels were less in SG (P< 0.01). Ten patients (28.5%) in SG and 21 patients (60%) in PG required inotrophyc support (P<0.001). We used IABP in eight patients (22.8%) in SG and 17 patients (48.5%) in CG (P=0.0001). Conclusion: This study showed that LS and SNP combination impressive increase in left ventricular systolic and diastolic functions including LVEF. The use of this combination achieved more less inotrophics and IABP requirement. We therefore suggest preoperative and peroperative levosimendan and SNP combination.PubMe
    corecore