908 research outputs found

    Promoting health workers' ownership of infection prevention and control: using Normalization Process Theory as an interpretive framework

    Get PDF
    Background All health workers should take responsibility for infection prevention and control (IPC). Recent reduction in key reported healthcare-associated infections in the UK is impressive, but the determinants of success are unknown. It is imperative to understand how IPC strategies operate as new challenges arise and threats of antimicrobial resistance increase. Methods The authors undertook a retrospective, independent evaluation of an action plan to enhance IPC and ‘ownership’ (individual accountability) for IPC introduced throughout a healthcare organization. Twenty purposively selected informants were interviewed. Data were analysed inductively. Normalization Process Theory (NPT) was applied to interpret the findings and explain how the action plan was operating. Findings Six themes emerged through inductive analysis. Theme 1: ‘Ability to make sense of ownership’ provided evidence of the first element of NPT (coherence). Regardless of occupational group or seniority, informants understood the importance of IPC ownership and described what it entailed. They identified three prerequisites: ‘Always being vigilant’ (Theme 2), ‘Importance of access to information’ (Theme 3) and ‘Being able to learn together in a no-blame culture’ (Theme 4). Data relating to each theme provided evidence of the other elements of NPT that are required to embed change: planning implementation (cognitive participation), undertaking the work necessary to achieve change (collective action), and reflection on what else is needed to promote change as part of continuous quality improvement (reflexive monitoring). Informants identified barriers (e.g. workload) and facilitators (clear lines of communication and expectations for IPC). Conclusion Eighteen months after implementing the action plan incorporating IPC ownership, there was evidence of continuous service improvement and significant reduction in infection rates. Applying a theory that identifies factors that promote/inhibit routine incorporation (‘normalization’) of IPC into everyday health care can help explain the success of IPC initiatives and inform implementation

    MeV-mass dark matter and primordial nucleosynthesis

    Full text link
    The annihilation of new dark matter candidates with masses mXm_X in the MeV range may account for the galactic positrons that are required to explain the 511 keV γ\gamma-ray flux from the galactic bulge. We study the impact of MeV-mass thermal relic particles on the primordial synthesis of 2^2H, 4^4He, and 7^7Li. If the new particles are in thermal equilibrium with neutrinos during the nucleosynthesis epoch they increase the helium mass fraction for m_X\alt 10 MeV and are thus disfavored. If they couple primarily to the electromagnetic plasma they can have the opposite effect of lowering both helium and deuterium. For mX=4m_X=4--10 MeV they can even improve the overall agreement between the predicted and observed 2^2H and 4^4He abundances.Comment: 11 pages, 10 figures, references and two appendices added, conclusions unchanged; accepted for publication in Phys.Rev.

    On the Reported Death of the MACHO Era

    Get PDF
    We present radial velocity measurements of four wide halo binary candidates from the sample in Chaname & Gould (2004; CG04) which, to date, is the only sample containing a large number of such candidates. The four candidates that we have observed have projected separations >0.1 pc, and include the two widest binaries from the sample, with separations of 0.45 and 1.1 pc. We confirm that three of the four CG04 candidates are genuine, including the one with the largest separation. The fourth candidate, however, is spurious at the 5-sigma level. In the light of these measurements we re-examine the implications for MACHO models of the Galactic halo. Our analysis casts doubt on what MACHO constraints can be drawn from the existing sample of wide halo binaries.Comment: 6 Pages, 4 Figures, Accepted for MNRAS Letter

    Disk and Halo Wide Binaries from the Revised Luyten Catalog: Probes of Star Formation and MACHO Dark Matter

    Full text link
    We present a catalog of 1147 candidate common proper motion binaries selected from the revised New Luyten Two-Tenths Catalog. Among these, we identify 999 genuine physical pairs using the measured proper-motion difference and the relative positions of each binary's components on a reduced proper-motion (RPM) diagram. The RPM positions also serve to classify them as either disk main-sequence (801), halo subdwarf (116), or pairs containing at least one white dwarf (82). The disk and halo samples are complete to separations of \theta=500" and \theta=900", which correspond to ~0.1 pc and ~1 pc, respectively. At wide separations, both distributions are well described by single power laws, dN/d\theta ~ \theta^{-\alpha}: \alpha=1.67+-0.07 for the disk and \alpha=1.55+-0.10 for the halo. The fact that these distributions have similar slopes (and similar normalizations as well) argues for similarity of the star-formation conditions of these two populations. The fact that the halo binaries obey a single power law out to ~1 pc permits strong constraints on halo dark-matter candidates. At somewhat closer separations (10"<\theta<25"), the disk distribution shows a pronounced flattening, which is detected at very high statistical significance and is not due to any obvious systematic effect. We also present a list of 11 previously unknown halo stars with parallaxes that are recognized here as companions of Hipparcos stars.Comment: 56 pages, 16 figures; replaced with version accepted for publication in Ap

    The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf

    Get PDF
    Parallax is the most fundamental technique to measure distances to astronomical objects. Although terrestrial parallax was pioneered over 2000 years ago by Hipparchus (ca. 140 BCE) to measure the distance to the Moon, the baseline of the Earth is so small that terrestrial parallax can generally only be applied to objects in the Solar System. However, there exists a class of extreme gravitational microlensing events in which the effects of terrestrial parallax can be readily detected and so permit the measurement of the distance, mass, and transverse velocity of the lens. Here we report observations of the first such extreme microlensing event OGLE-2007-BLG-224, from which we infer that the lens is a brown dwarf of mass M=0.056 +- 0.004 Msun, with a distance of 525 +- 40 pc and a transverse velocity of 113 +- 21 km/s. The velocity places the lens in the thick disk, making this the lowest-mass thick-disk brown dwarf detected so far. Follow-up observations may allow one to observe the light from the brown dwarf itself, thus serving as an important constraint for evolutionary models of these objects and potentially opening a new window on sub-stellar objects. The low a priori probability of detecting a thick-disk brown dwarf in this event, when combined with additional evidence from other observations, suggests that old substellar objects may be more common than previously assumed.Comment: ApJ Letters, in press, 15 pages including 2 figure

    MOA-2011-BLG-293Lb: A test of pure survey microlensing planet detections

    Get PDF
    Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy, projected separations of s^{-1} are only marginally disfavored at Delta chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17} M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500) than with the followup data. The Delta chi^2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.Comment: 29 pages, 6 figures, Replaced 7/3/12 with the version accepted to Ap

    MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf

    Get PDF
    We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax \pi_E, which is due to the Earth's orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011

    Star formation in the central 0.5 pc of the Milky Way

    Full text link
    The supermassive black hole candidate at the Galactic Center is surrounded by a parsec-scale star cluster, which contains a number of early type stars. The presence of such stars has been called a "paradox of youth" as star formation in the immediate vicinity of a supermassive black hole seemed difficult, as well as the transport of stars from far out in a massive-star lifetime. I will recall 30 years of technological developments which led to the current understanding of the nuclear cluster stellar population. The number of early type stars known at present is sufficient to access the 3D structure of this population and its dynamics, which in turn allows discriminating between the various possible origins proposed along the years.Comment: 8 pages, invited review for the conference "The Universe under the Microscope" (AHAR 2008), to be published in Journal of Physics: Conference Series by Institute of Physics Publishin

    Extreme Magnification Microlensing Event OGLE-2008-BLG-279: Strong Limits on Planetary Companions to the Lens Star

    Get PDF
    We analyze the extreme high-magnification microlensing event OGLE-2008-BLG-279, which peaked at a maximum magnification of A ~ 1600 on 30 May 2008. The peak of this event exhibits both finite-source effects and terrestrial parallax, from which we determine the mass of the lens, M_l=0.64 +/- 0.10 M_Sun, and its distance, D_l = 4.0 +/- 0.6. We rule out Jupiter-mass planetary companions to the lens star for projected separations in the range 0.5-20 AU. More generally, we find that this event was sensitive to planets with masses as small as 0.2 M_Earth ~= 2 M_Mars with projected separations near the Einstein ring (~3 AU).Comment: 25 pages, 7 figures, submitted to Ap

    Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events

    Get PDF
    To improve the planet detection efficiency, current planetary microlensing experiments are focused on high-magnification events searching for planetary signals near the peak of lensing light curves. However, it is known that central perturbations can also be produced by binary companions and thus it is important to distinguish planetary signals from those induced by binary companions. In this paper, we analyze the light curves of microlensing events OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term perturbations near the peaks of the light curves. From detailed modeling of the light curves, we find that the perturbations of the events are caused by binary companions rather than planets. From close examination of the light curves combined with the underlying physical geometry of the lens system obtained from modeling, we find that the short time-scale caustic-crossing feature occurring at a low or a moderate base magnification with an additional secondary perturbation is a typical feature of binary-lens events and thus can be used for the discrimination between the binary and planetary interpretations.Comment: 17 pages, 4 figures, 1 tabl
    corecore