604 research outputs found

    Structure of nanoparticles embedded in micellar polycrystals

    Full text link
    We investigate by scattering techniques the structure of water-based soft composite materials comprising a crystal made of Pluronic block-copolymer micelles arranged in a face-centered cubic lattice and a small amount (at most 2% by volume) of silica nanoparticles, of size comparable to that of the micelles. The copolymer is thermosensitive: it is hydrophilic and fully dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into micelles at room temperature, where the block-copolymer is amphiphilic. We use contrast matching small-angle neuron scattering experiments to probe independently the structure of the nanoparticles and that of the polymer. We find that the nanoparticles do not perturb the crystalline order. In addition, a structure peak is measured for the silica nanoparticles dispersed in the polycrystalline samples. This implies that the samples are spatially heterogeneous and comprise, without macroscopic phase separation, silica-poor and silica-rich regions. We show that the nanoparticle concentration in the silica-rich regions is about tenfold the average concentration. These regions are grain boundaries between crystallites, where nanoparticles concentrate, as shown by static light scattering and by light microscopy imaging of the samples. We show that the temperature rate at which the sample is prepared strongly influence the segregation of the nanoparticles in the grain-boundaries.Comment: accepted for publication in Langmui

    Quantitative description of temperature induced self-aggregation thermograms determined by differential scanning calorimetry

    Get PDF
    A novel thermodynamic approach for the description of differential scanning calorimetry (DSC) experiments on self-aggregating systems is derived and presented. The method is based on a mass action model where temperature dependence of aggregation numbers is considered. The validity of the model was confirmed by describing the aggregation behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers, which are well-known to exhibit a strong temperature dependence. The quantitative description of the thermograms could be performed without any discrepancy between calorimetric and van 't Hoff enthalpies, and moreover, the aggregation numbers obtained from the best fit of the DSC experiments are in good agreement with those obtained by light scattering experiments corroborating the assumptions done in the derivation of the new model

    Towards generalized measures grasping CA dynamics

    Get PDF
    In this paper we conceive Lyapunov exponents, measuring the rate of separation between two initially close configurations, and Jacobians, expressing the sensitivity of a CA's transition function to its inputs, for cellular automata (CA) based upon irregular tessellations of the n-dimensional Euclidean space. Further, we establish a relationship between both that enables us to derive a mean-field approximation of the upper bound of an irregular CA's maximum Lyapunov exponent. The soundness and usability of these measures is illustrated for a family of 2-state irregular totalistic CA

    Opioid overdose mortality among former North Carolina inmates: 2000-2015

    Get PDF
    Objectives. To examine differences in rates of opioid overdose death (OOD) between former North Carolina (NC) inmates and NC residents and evaluate factors associated with postrelease OOD. Methods. We linked NC inmate release data to NC death records, calculated OOD standardized mortality ratios to compare former inmates with NC residents, and calculated hazard ratios to identify predictors of time to OOD. Results. Of the 229 274 former inmates released during 2000 to 2015, 1329 died from OOD after release. At 2-weeks, 1-year, and complete follow-up after release, the respective OOD risk among former inmates was 40 (95% confidence interval [CI] = 30, 51), 11 (95% CI = 9.5, 12), and 8.3 (95% CI = 7.8, 8.7) times as high as general NC residents; the corresponding heroin overdose death risk among former inmates was 74 (95% CI = 43, 106), 18 (95% CI = 15, 21), and 14 (95% CI = 13, 16) times as high as general NC residents, respectively. Former inmates at greatest OOD risk were those within the first 2 weeks after release, aged 26 to 50 years, male, White, with more than 2 previous prison terms, and who received in-prison mental health and substance abuse treatment. Conclusions. Former inmates are highly vulnerable to opioids and need urgent prevention measures

    Wavelet Neural Networks: A Practical Guide

    Get PDF
    Wavelet networks (WNs) are a new class of networks which have been used with great success in a wide range of application. However a general accepted framework for applying WNs is missing from the literature. In this study, we present a complete statistical model identification framework in order to apply WNs in various applications. The following subjects were thorough examined: the structure of a WN, training methods, initialization algorithms, variable significance and variable selection algorithms, model selection methods and finally methods to construct confidence and prediction intervals. In addition the complexity of each algorithm is discussed. Our proposed framework was tested in two simulated cases, in one chaotic time series described by the Mackey-Glass equation and in three real datasets described by daily temperatures in Berlin, daily wind speeds in New York and breast cancer classification. Our results have shown that the proposed algorithms produce stable and robust results indicating that our proposed framework can be applied in various applications

    Designing AfriCultuReS services to support food security in Africa

    Get PDF
    ABSTRACT: Earth observation (EO) data are increasingly being used to monitor vegetation and detect plant growth anomalies due to water stress, drought, or pests, as well as to monitor water availability, weather conditions, disaster risks, land use/land cover changes and to evaluate soil degradation. Satellite data are provided regularly by worldwide organizations, covering a wide variety of spatial, temporal and spectral characteristics. In addition, weather, climate and crop growth models provide early estimates of the expected weather and climatic patterns and yield, which can be improved by fusion with EO data. The AfriCultuReS project is capitalizing on the above to contribute towards an integrated agricultural monitoring and early warning system for Africa, supporting decision making in the field of food security. The aim of this article is to present the design of EO services within the project, and how they will support food security in Africa. The services designed cover the users' requirements related to climate, drought, land, livestock, crops, water, and weather. For each category of services, results from one case study are presented. The services will be distributed to the stakeholders and are expected to provide a continuous monitoring framework for early and accurate assessment of factors affecting food security in Africa.This paper is part of the AfriCultuReS project "Enhancing Food Security in African Agricultural Systems with the Support of Remote Sensing", which received funding from the European Union's Horizon 2020 Research and Innovation Framework Programme under grant agreement No. 77465

    Wavelet Neural Network Methodology for Ground Resistance Forecasting

    Get PDF
    Motivated by the need of engineers for a flexible and reliable tool for estimating and predicting grounding systems behavior, this study developed a model that accurately describes and forecasts the dynamics of ground resistance variation. It is well-known that grounding systems are a key of high importance for the safe operation of electrical facilities, substations, transmission lines and, generally, electric power systems. Yet, in most cases, during the design stage, electrical engineers and researchers have limited information regarding the terrain’s soil resistivity variation. Moreover, the periodic measurement of ground resistance is hindered very often by the residence and building infrastructure. The model, developed in the present study, consists of a nonlinear, nonparametric Wavelet Neural Network (WNN), trained in field measurements of soil resistivity and rainfall height, observed the past four years. The proposed framework is tested in five different grounding systems with different ground enhancing compounds, so that can be used for the evaluation of the behavior of several ground enhancing compounds, frequently used in grounding practice. The research results indicate that the WNN can constitute an accurate model for ground resistance forecasting and can be a useful tool in the disposal of electrical engineers. Therefore, this paper introduces the wavelet analysis in the field of ground resistance evaluation and endeavors to take advantage of the benefits of computational intelligence

    Associations between implementation of Project Lazarus and opioid analgesic dispensing and buprenorphine utilization in North Carolina, 2009–2014

    Get PDF
    Background Project Lazarus (PL) is a seven-strategy, community-coalition-based intervention designed to reduce opioid overdose and dependence. The seven strategies include: community education, provider education, hospital emergency department policy change, diversion control, support programs for patients with pain, naloxone policies, and addiction treatment expansion. PL was originally developed in Wilkes County, NC. It was made available to all counties in North Carolina starting in March 2013 with funding of up to $34,400 per county per year. We examined the association between PL implementation and 1) overall dispensing rate of opioid analgesics, and 2) utilization of buprenorphine. Buprenorphine is often used in connection with medication assisted treatment (MAT) for opioid dependence. Methods Observational interrupted time series analysis of 100 counties over 2009–2014 (n = 7200 county-months) in North Carolina. The intervention period was March 2013–December 2014. 74 of 100 counties implemented the intervention. Exposure data sources comprised process surveys, training records, Prescription Drug Monitoring Program (PDMP) data, and methadone treatment program quality data. Outcomes were PDMP-derived counts of opioid prescriptions and buprenorphine patients. Incidence Rate Ratios were estimated with adjusted GEE Poisson regression models of all seven PL strategies. Results In adjusted models, diversion control efforts were positively associated with increased dispensing of opioid analgesics (IRR: 1.06; 95% CI: 1.03, 1.09). None of the other PL strategies were associated with reduced prescribing of opioid analgesics. Support programs for patients with pain were associated with a non-significant decrease in buprenorphine utilization (IRR: 0.93; 95% CI: 0.85, 1.02), but addiction treatment expansion efforts were associated with no change in buprenorphine utilization (IRR: 0.98; 95% CI: 0.91, 1.06). Conclusions Implementation of PL strategies did not appreciably reduce opioid dispensing and did not increase buprenorphine utilization. These results are consistent with previous findings of limited impact of PL strategies on overdose morbidity and mortality. Future studies should analyze the uptake of MAT using a more expansive view of institutional barriers, treating community coalition activity around MAT as an effect modifier
    corecore