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A Wireless Sensor Network (WSN), distributed within an
area of interest, is a network that contains many wirelessly
interconnected devices, with sensing, communication, and
processing abilities called sensor nodes. A WSN also com-
prises of at least one sink node, called base station, which
has enhanced energy, computational, and communication
resources [1]. Based on the combined use of its constituting
elements, a WSN is capable of monitoring the conditions
existing at extensive regions of interest [2, 3]. For this reason,
the domain of WSNs is considered the basis for Internet of
Things (IoT) and Internet of Everything (IoE) and supports
a continuously growing range of human activities [4–11].

On the other hand, the development of WSNs is
obstructed due to both the restricted resources of sensor
nodes in energy supply, memory and processing, and the
inherent limitations of wireless communications, in terms
of power, speed, and capacity of communication channels
as well as resistance to interferences and intrusion detection
and prevention to preserve data security.

Particularly, the most important weakness ofWSNs is the
extremely restricted energy sufficiency of sensor nodes that
reduces their operational time and thus shortens the overall
network lifetime [12]. Consequently, the achievement of
energy conservation is vital for WSNs to remain operational.
This is why all possible causes of energy waste in sensor
nodes must be eliminated. Given that, the procedure of wire-

less communication is by far the most energy consuming task
of a sensor node, and numerous research works have been
proposed in order to accomplish power control and energy
efficient routing of data among the sensor nodes themselves
and the BS [13–18].

Also, several data aggregation methodologies that aim at
eliminating redundant data in order to reduce the volume of
the data transmitted have been developed [19, 20]. Their
usage saves energy, under the condition that the energy
expended for aggregation purposes is lower than the energy
consumed for raw data transmission.

Additionally, the preservation of network connectivity in
WSNs is an issue of crucial importance for both the execu-
tion of the routing process and the prolongation of network
lifetime. This is because, as soon as a sensor node is discon-
nected from its neighboring nodes due to either a malfunc-
tion or the depletion of its energy reserves, the data routing
is obstructed for them, and the corresponding communica-
tion cost is considerably increased, thus accelerating their
depletion. For these reasons, various methods pursuing
connectivity conservation are used [21, 22].

Another very important performance metric is that is
that of coverage. Three types of coverage in WSNs are iden-
tified, namely, area coverage, point coverage, and barrier cov-
erage. Specifically, area coverage expresses the ability of the
network to monitor an area of interest, meaning that all
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points within this area are within the sensing range of at least
one sensor node. Similarly, k-coverage refers to the ability of
the network to assure that all points within an area of interest
are always within the sensing range of at least k sensor nodes
(where k is a positive integer number). Also, point coverage
refers to the ability of the network to guarantee that a prede-
termined group of points are observed by at least one sensor
node. Additionally, barrier coverage refers to the ability to
detect the movement across a barrier of sensor nodes.
The maximization of area coverage is the most widely
referred case in WSNs. There are various factors that affect
coverage. For example, the deployment of sensor nodes can
be either random or deterministic. Likewise, the sensitivity
of sensor nodes may be either Boolean or probabilistic.
Also, the sensing area may be deterministic or probabilistic.
Similarly, the communication range of sensor nodes may be
invariable or variable. Additionally, sensor nodes may be
either static or mobile. Moreover, the coverage scheme
adopted may be either centralized or distributed [23].
Therefore, the maximization of coverage using the resource
constrained sensor nodes in a WSN is a nontrivial problem.
This is why sophisticated methodologies for coverage
maximization are used [24–26].

Congestion is an additional problem for WSNs. Actually,
two types of congestion may occur in WSNs. The first of
them is the so-called node-level congestion that is caused
by the overflow of sensor node buffers. The link-level conges-
tion is the second type. It occurs when many sensor nodes try
to use simultaneously the same communication channel [27].
Both types of congestion cause packet losses and conse-
quently necessitate packet retransmissions thus depleting
the energy reserves of sensor nodes and reducing communi-
cation throughput [28]. For these reasons, numerous meth-
odologies for congestion avoidance [29–32] that aim at
preventing the occurrence of congestion and congestion con-
trol [33–35] that try to alleviate existent congestion are used.

Likewise, in WSNs where multimedia data are transmit-
ted, there is need to transfer huge volume of information in
high rates, thus increasing the energy cost of communication
and overloading the communication channels [36, 37]. The
usage of appropriate schemes that have been proposed in
order to accomplish compression and restoration of images
[38–41] or video [42, 43], in such cases, provides consider-
able decrease of communication load.

The attainment of high QoS is very important not only
for wireless multimedia sensor networks (WMSNs) but also
for all kinds of WSNs. QoS in WSNs may consider collective
parameters such as latency, packet losses, bandwidth, and
throughput, which are also taken into account in conven-
tional networks. Yet, there other QoS metrics too that are
related with the distinctive features of WSNs such as the
limitations of the sensor nodes, the unbalance of traffic, the
heterogeneity of senor nodes, the scalability requirements,
the dynamic nature of networks, the differences in message
priorities, the variety of traffic types, and the coexistence of
various sinks [44]. For these reasons, various methods for
QoS preservation in WSNs have been proposed [45, 46].

Security is also an issue of critical importance, because
cyberattacks have become one of the most challenging prob-

lems that organizations must face, and WSNs are not the
exemption to this. General methods have been proposed for
the optimization of cybersecurity controls [47, 48]. Yet, such
methods are not directly applicable toWSNs. This is because,
in WSNs, sensor nodes may operate unattended and con-
nected in a ubiquitous manner with a number of devices
within the context of zero-trust security. This makes WSNs
a challenging infrastructure to secure against numerous
threats. The application of cyber controls to WSNs at opera-
tional level is not a straightforward process not only due to
the above reasons but also due to the limited resources that
sensor nodes have available. Numerous works have investi-
gated secure data transmission in WSNs or device-to-device
communications in general [49–53].

Scientific literature is rich in approaches that aim at
achieving performance optimization in terms of individual
metrics, like the aforementioned ones. However, meeting
desired requirements in terms of more than one of these
metrics is much more difficult, due to the fact that in many
cases, the conditions required to optimize each one of these
metrics may conflict with each other.

Thus, the combinational use of conventional single-
objective optimization algorithms may be unsuitable for real
applications, since they act to the detriment of the rest of the
performance parameters. For instance, the coverage maximi-
zation objective in a WSN requires the sparse placing of
nodes, which increases the energy cost of communication
and thus obstructs the pursuit of maximizing the network
lifetime. Similarly, the sparse deployment of sensor nodes
worsens connectivity. Also, in order to save energy, it is pref-
erable to transmit sensed data over reduced distance at each
hop. Yet this increases the accumulative time for data trans-
mission from source to final destination. So the minimization
of energy cost of communications in a WSN contradicts the
objective of minimizing the end-to-end latency. Similarly,
the objective of attaining high QoS obstructs the conserva-
tion of energy. Likewise, the increase of the number of sensor
nodes is beneficial for the connectivity, the coverage, and the
overall network operability at the expense of increasing
energy consumption. In the same way, the accomplishment
of high security standards acts to the detriment of numerous
nonsecurity requirements, like the abovementioned ones,
that may occasionally or always be more critical than protect-
ing a WSN infrastructure against cyberattacks [54]. For these
reasons, the development of multiobjective optimization
algorithms which aim at simultaneously achieving various
goals, subject to a set of constraints in order to enhance the
performance of WSNs, is a critical challenge [54–60].

Metaheuristic search methods have been very promising
in this area, as most of them can approximate multiple ele-
ments of the Pareto front in a single evaluation, due to their
population-based nature. Another important advantage of
these methods is their ability to avoid getting trapped in local
minima, which makes them suitable for global optimization
[60]. Some of the most popular metaheuristic search
methods are based on evolutionary computation [61–63],
where the objective is to imitate biological evolution, and
on swarm intelligence methods [64–66], which mimic the
collective behavior exhibited by swarms of birds. Hybrid
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methods, combining the advantages of both worlds, have also
been proposed [67].

Within this line of research, Kong and Yu, in their work
entitled Modeling and Optimization of RFID Networks
Planning Problem, presented a mathematical model that con-
siders the tag coverage and the reader interference, in order
to solve the planning problem at Radio Frequency Identifica-
tion (RFID) Networks. For this reason, they introduced the
DEEPSO algorithm, which adds Differential Evolution (DE)
and Evolutionary Strategies (ES) to the standard Particle
Swarm Optimization (PSO) algorithm. It was shown that
DEEPSO improves global convergence ability and particle
diversity, while also avoiding local convergence.

A different approach involves decentralized schemes
which make use of cooperative agents, where data are parti-
tioned and processed in individual clusters, thus avoiding the
need of solving the optimization problem in a centralized
way [68]. Within this context, Aznaoui et al., in their work
entitled A Heuristic Algorithm of Cooperative Agents Commu-
nication for Enhanced GAF Routing Protocol in WSNs pro-
posed a novel routing protocol. This protocol, named the
Cooperative Agents GAF (CAGAF) protocol, uses a heuristic
method based on cooperative agent communication, in order
to find an optimal path in terms of energy to transmit data col-
lected until reaching the base station. The proposed protocol
was found to outperform GAF protocol in terms of consider-
ing important data, energy consumed, and dead nodes.

Jadoon et al., in their work entitled Performance Evalua-
tion of Zone-Based Routing with Hierarchical Routing in
Wireless Sensor Networks, also focus on data routing proto-
cols in WSNs. Precisely, they made a comparative study
among zone-based and static cluster hierarchical routing
protocols in terms of three performance criteria, namely,
energy efficiency, network throughput, and overall network
lifetime. It was shown that in zone-based protocols, contrary
to what happens in static cluster hierarchical protocols, no
extra control information is needed while selecting the next
hop nodes, thus achieving better performance in terms of
the three abovementioned criteria.

Last but not least, Mo et al. in the research work entitled
Transmit Power Allocation with Connectivity Probability for
Multi-QoS in Cluster Flight Spacecraft Network proposed a
transmit power allocation strategy to minimize the average
packet error rate at the access point in cluster flight spacecraft
networks (CFSNs). By usingMonte Carlo method for the val-
idation of the analytical model developed, the influence of
node transmit power on the QoS performance of cluster
flight spacecraft network was simulated and analyzed under
the assumption of finite overall network transmit power
and low traffic load. It was verified that the proposed transmit
power allocation strategy allows to minimize the packet error
rate for a given total network transmit power at any time slot
for CFSNs.

Based on the ceaseless evolution of WSNs, and the ever
growing range of their applications, it is logical to suppose
that more and more challenges will arise for the develop-
ment of sophisticated algorithms that will be able to
achieve the performance optimization of WSNs in terms
of multiple objectives.
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