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Abstract— Wavelet networks (WNs) are a new class of networks which have been 

used with great success in a wide range of application. However a general accepted 

framework for applying WNs is missing from the literature. In this study, we present a 

complete statistical model identification framework in order to apply WNs in various 

applications. The following subjects were thorough examined: the structure of a WN, 

training methods, initialization algorithms, variable significance and variable selection 

algorithms, model selection methods and finally methods to construct confidence and 

prediction intervals. In addition the complexity of each algorithm is discussed. Our 

proposed framework was tested in two simulated cases, in one chaotic time series 

described by the Mackey-Glass equation and in three real datasets described by daily 

temperatures in Berlin, daily wind speeds in New York and breast cancer classification. 

Our results have shown that the proposed algorithms produce stable and robust results 

indicating that our proposed framework can be applied in various applications. 

 

Index Terms—Wavelet networks, model identification, variable selection, model 

selection, confidence intervals, prediction intervals 

 

1. Introduction 

  

Wavelet networks are a new class of networks that combine the classic sigmoid neural 

networks (NNs) and the wavelet analysis (WA). WNs have been used with great 

success in a wide range of applications. However a general accepted framework for 

applying WNs is missing from the literature. In this study, we present a complete 

statistical model identification framework in order to apply WNs in various 

applications. To our knowledge we are the first to do so. Although a vast literature about 

WNs exists, to our knowledge this is the first study that presents a step by step guide 

for model identification for WNs. Model identification can be separated in two parts, 

model selection and variable significance testing. In this study a framework similar to 

the one proposed by (A. Zapranis & Refenes, 1999) for the classical sigmoid NNs is 

adapted. More precisely, the following subjects were thorough examined: the structure 

of a WN, training methods, initialization algorithms, variable significance and variable 

selection algorithms, model selection methods and finally methods to construct 

confidence and prediction intervals. Only in (Iyengar, Cho, & Phoha, 2002) some of 

these issues are studied to some extent. 

WA has proved to be a valuable tool for analyzing a wide range of time-series and 

has already been used with success in image processing, signal de-noising, density 

estimation, signal and image compression and time-scale decomposition. WA is often 

regarded as a "microscope" in mathematics, (Cao, Hong, Fang, & He, 1995), and it is a 

powerful tool for representing nonlinearities, (Fang & Chow, 2006). The major 
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drawback of the WA is that it is limited to applications of small input dimension. The 

reason is that the construction of a wavelet basis is computationally expensive when 

the dimensionality of the input vector is relative high, (Q. Zhang, 1997). 

On the other hand NNs have the ability to approximate any deterministic non-linear 

process, with little knowledge and no assumptions regarding the nature of the process. 

However the classical sigmoid NNs have a series of drawbacks. Typically, the initial 

values of the NN’s weights are randomly chosen. Random weights initialization is 

generally accompanied with extended training times. In addition, when the transfer 

function is of sigmoidal type, there is always significant change that the training 

algorithm will converge to local minima. Finally, there is no theoretical link between 

the specific parameterization of a sigmoidal activation function and the optimal network 

architecture, i.e. model complexity (the opposite holds true for WNs). 

In (Pati & Krishnaprasad, 1993) it has been demonstrated that it is possible to 

construct a theoretical formulation of a feedforward NN in terms of wavelet 

decompositions. WNs were proposed by (Q. Zhang & Benveniste, 1992) as an 

alternative to feedforward NNs which would alleviate the aforementioned weaknesses 

associated with each method. The WNs are a generalization of radial basis function 

networks (RBFN). WNs are one hidden layer networks that use a wavelet as an 

activation function, instead of the classic sigmoidal family. It is important to mention 

here that the multidimensional wavelets preserve the “universal approximation” 

property that characterizes NNs. The nodes (or wavelons) of WNs are the wavelet 

coefficients of the function expansion that have a significant value. In (Bernard, Mallat, 

& Slotine, 1998) various reasons were presented in why wavelets should be used 

instead of other transfer functions. In particular, firstly, wavelets have high compression 

abilities, and secondly, computing the value at a single point or updating the function 

estimate from a new local measure, involves only a small subset of coefficients. 

WNs have been used in a variety of applications so far, i.e. in short term load 

forecasting, (Bashir & El-Hawary, 2000; Benaouda, Murtagh, Starck, & Renaud, 2006; 

Gao & Tsoukalas, 2001; Ulugammai, Venkatesh, Kannan, & Padhy, 2007; S. J. Yao, 

Song, Zhang, & Cheng, 2000), in time series prediction, (Cao, et al., 1995; Chen, Yang, 

& Dong, 2006; Cristea, Tuduce, & Cristea, 2000), signal classification and 

compression, (Kadambe & Srinivasan, 2006; Pittner, Kamarthi, & Gao, 1998; Subasi, 

Alkan, Koklukaya, & Kiymik, 2005), signal denoising, (Z. Zhang, 2007), static, 

dynamic (Allingham, West, & Mees, 1998; Oussar & Dreyfus, 2000; Oussar, Rivals, 

Presonnaz, & Dreyfus, 1998; Pati & Krishnaprasad, 1993; Postalcioglu & Becerikli, 

2007; Q. Zhang & Benveniste, 1992), and nonlinear modeling, (Billings & Wei, 2005), 

nonlinear static function approximation, (Jiao, Pan, & Fang, 2001; Szu, Telfer, & 

Kadambe, 1992; Wong & Leung, 1998), to mention the most important. In (Khayamian, 

Ensafi, Tabaraki, & Esteki, 2005) WN were even proposed as a multivariate calibration 

method for simultaneous determination of test samples of copper, iron, and aluminum. 

In contrast to classical “sigmoid NNs”, WNs allow for constructive procedures that 

efficiently initialize the parameters of the network. Using wavelet decomposition a 

“wavelet library” can be constructed. In turn, each wavelon can be constructed using 

the best wavelet of the wavelet library. The main characteristics of these procedures 

are: i) convergence to the global minimum of the cost function, ii) initial weight vector 

into close proximity of the global minimum, and as a consequence drastically reduced 

training times, (Q. Zhang, 1997; Q. Zhang & Benveniste, 1992). In addition, WNs 

provide information for the relative participation of each wavelon to the function 

approximation and the estimated dynamics of the generating process. Finally, efficient 
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initialization methods will approximate the same vector of weights that minimize the 

loss function each time. 

In  (A. Zapranis & Alexandridis, 2008) and  (A. Zapranis & Alexandridis, 2009) we 

give a concise treatment of wavelet theory. For a complete theoretical background on 

wavelets and wavelet analysis refer to (Daubechies, 1992) and (Mallat, 1999). Here the 

emphasis is in presenting the theory and mathematics of wavelet neural networks.  

The rest of the paper is organized as follows. In section 2 we present the WN. More 

precisely in section 2.1 the structure of a WN is described. In section 2.2 various 

initialization methods were described. In section 2.3 a training method of the WN is 

presented and in section 2.4 the stopping conditions of the training are described. In 

section 2.5 the various initialization methods are compared and evaluated. A model 

selection algorithm is described in section 3 and is evaluated in two cases in section 

3.1. Next, various criteria for selecting significant variables are presented while a 

variable selection algorithm is analytically presented in section 4.1. In section 4.2 the 

proposed algorithm is evaluated in two cases. In section 5 methods to estimate the 

model and variance uncertainty are described. In section 5.1 a framework for 

constructing confidence intervals is presented while in section 5.2 a framework for 

constructing prediction intervals is presented. In section 5.3 the proposed framework 

for constructing confidence and prediction intervals is evaluated in two cases. In section 

6 the proposed framework is applied in real data described by temperature in Berlin. 

Similarly, our framework is applied in wind speed data in section 7. In section 8 a WN 

is constructed for breast cancer classification while in section 9 the proposed framework 

is applied in modeling and predicting the chaotic Mackey-Glass equation. Finally, in 

section 10 we conclude. 

 

2. Wavelet Neural Networks for Multivariate Process Modeling 

 

2.1.  Structure of a Wavelet Network 
 

In this section the structure of a WN is presented and discussed. A WN usually has 

the form of a three layer network. The lower layer represents the input layer, the middle 

layer is the hidden layer and the upper layer is the output layer. 

In the input layer the explanatory variables are introduced to the WN. The hidden 

layer consists of the hidden units (HUs). The HUs are often referred as wavelons, 

similar to neurons in the classical sigmoid NNs. In the hidden layer the input variables 

are transformed to dilated and translated version of the mother wavelet. Finally, in the 

output layer the approximation of the target values is estimated. 

The idea of a WN is to adapt the wavelet basis to the training data. Hence, the 

wavelet estimator is expected to be more efficient than a sigmoid NN, (Q. Zhang, 1993). 

In (Billings & Wei, 2005; Kadambe & Srinivasan, 2006; Mellit, Benghamen, & 

Kalogirou, 2006; Xu & Ho, 1999) an adaptive WN was used. In (Chen, et al., 2006) a 

local linear WN was proposed. The difference is that the connections weights between 

the hidden layer and output layer are replaced by a local linear model. In (Fang & Chow, 

2006) and (Jiao, et al., 2001) a multiwavelet NN is proposed. In this structure, the 

activation function is a linear combination of wavelet bases instead of the wavelet 

function. During the training phase, the weights of all wavelets are updated. The 

multiwavelet NN is also enhanced by the DWT. Their results indicate that the proposed 

model increases the approximation capability of the network. In (Khayamian, et al., 

2005) a principal component-wavelet NN was introduced. In this context, first principal 
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component analysis (PCA) has been applied to the training data in order to reduce the 

dimensionality. Then a WN was used for function approximation. In (Zhao, Chen, & 

Shen, 1998) a multidimensional wavelet-basis function NN was used. More precisely 

(Zhao, et al., 1998) use a multidimensional wavelet function as the activation function 

in the hidden layer. Then the sigmoid function was used as an activation function in the 

output layer. (Becerikli, 2004) proposes a network with unconstrained connectivity and 

with dynamic elements (lag dynamics) in its wavelet processing units called dynamic 

WN. 

In this study, we implement a multidimensional WN with a linear connection 

between the wavelons and the output. Moreover, in order for the model to perform well 

in the presence of linearity, we use direct connections from the input layer to the output 

layer. Hence, a network with zero HUs is reduced to the linear model. 

The structure of a single hidden-layer feedforward WN is given in Fig. 1. The 

network output is given by the following expression: 
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In that expression, Ψj(x) is a multidimensional wavelet which is constructed by the 

product of m scalar wavelets, x is the input vector, m is the number of network inputs, 

λ is the number of HUs and w stands for a network weight. The multidimensional 

wavelets are computed as follows: 
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where ψ is the mother wavelet and 
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In the above expression, i = 1, …, m,  j = 1, …, λ+1 and the weights w correspond to 

the translation  ( [1]

( )ijw  ) and the dilation ( [1]

( )ijw  ) factors. The complete vector of the 

network parameters comprises:  [0] [2] [2] [1] [1]

1 ( ) ( ), , , ,i j ij ijw w w w w w   . These parameters are 

adjusted during the training phase. 

In bibliography three mother wavelets are usually suggested, the Gaussian 

derivative, the second derivative of the Gaussian, the so-called “Mexican Hat” and the 

Morlet wavelet.   

The selection of the mother wavelet depends on the application and is not limited to 

the above choices. The activation function can be a wavenet (orthogonal wavelets) or a 

wave frame (continuous wavelets). Following (Becerikli, Oysal, & Konar, 2003; 

Billings & Wei, 2005; Q. Zhang, 1994) we use as a mother wavelet the Mexican Hat 

function which proved to be useful and to work satisfactorily in various applications 

and is given by:  
21
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                                                                                                  (4) 

 



Preprint – Published in Neural Networks, 42, pp. 1-27, 2013 

 

2.2.Initialization of the Parameters of the Network  

 

In WNs, in contrast to NNs that use sigmoid functions, selecting initial values of the 

dilation and translation parameters randomly may not be suitable, (Oussar, et al., 1998). 

A wavelet is a waveform of effectively limited duration that has an average value of 

zero and localized properties hence a random initialization may lead to wavelons with 

a value of zero. Training algorithms like gradient descent with random initialization are 

inefficient, (Q. Zhang, 1993), since random initialization affects the speed of training 

and may lead to a local minimum of the loss function, (Postalcioglu & Becerikli, 2007). 

Also, in sigmoid NNs, although a minimization of the loss function can be replicated 

with random initialization the values of the weights will be vary each time, (Anders & 

Korn, 1999). 

Utilizing the information that can be extracted by the WA from the input dataset the 

initial values of the parameters w  of the network can be selected in an efficient way. 

Efficient initialization will result to less iterations in the training phase of the network 

and training algorithms that will avoid local minimums of the loss function in the 

training phase. Finally, efficient initialization methods will approximate the same 

vector of weights that minimize the loss function each time. 

Various methods have been proposed for an optimized initialization of the wavelet 

parameters. In (Q. Zhang & Benveniste, 1992) the following initialization for the 

translation and dilation parameters is introduced: 
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where Mi and Ni are defined as the maximum and minimum of input xi. 
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In the above framework, the initialization of the parameters is based on the input 

domains defined by the examples of the training sample, (Oussar, et al., 1998). 

The initialization of the direct connections [0]

iw  and the weights [2]

jw  is less important 

and they are initialized in small random values between 0 and 1. 

The previous heuristic method is simple and it its computational cost is almost 

negligible. However, it is not efficient as it is shown on the next section. The heuristic 

method does not guarantee that the training will find the global minimum. Moreover 

this method does not use any information that the wavelet decomposition can provide. 

Recent studies proposed more complex methods that utilize the information 

extracted by the WA, (Kan & Wong, 1998; Oussar & Dreyfus, 2000; Oussar, et al., 

1998; Wong & Leung, 1998; Xu & Ho, 2002; Q. Zhang, 1997). These methods are not 

optimal but a trade-off between optimality and efficiency, (He, Chu, & Zhong, 2002). 

The implementation of these methods can be summed in the following three steps. 

1. Construct a library W of wavelets 
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2. Remove the wavelets that their support does not contain any sample points of 

the training data. 

3. Rank the remaining wavelets and select the best wavelet regressors. 

In the first step, the wavelet library can be constructed either by an orthogonal wavelet 

or a wavelet frame, (He, et al., 2002; Postalcioglu & Becerikli, 2007). By determining 

an orthogonal wavelet basis the WN is simultaneously constructed. However, in order 

to generate an orthogonal wavelet basis, the wavelet function has to satisfy strong 

restrictions, (Daubechies, 1992; Mallat, 1999). In addition the fact that orthogonal 

wavelets cannot be expressed in closed form constitutes them inappropriate for 

applications of function approximation or process modeling, (Oussar & Dreyfus, 2000). 

On the other hand constructing wavelet frames is very easy and can be done by 

translating and dilating the selected mother wavelet. The results from (Gao & 

Tsoukalas, 2001) indicate that a family of compactly supported non-orthogonal 

wavelets is more appropriate for function approximation. Due to the fact that a wavelet 

family can contain a large number of wavelets, it is more convenient to use a truncated 

wavelet family than an orthogonal wavelet basis, (Q. Zhang, 1993).  

However, constructing a WN using wavelet frames is not a straightforward process. 

The wavelet library may contain a large number of wavelets since only the input data 

were considered in the construction of the wavelet frame. In order to construct a WN 

the “best” wavelets must be selected. However, arbitrary truncations may lead to large 

errors, (Xu & Ho, 2005). In the second step, (Q. Zhang, 1993) proposes to remove the 

wavelets that have very few training patterns in their support. Alternatively, in (Cannon 

& Slotine, 1995) magnitude based methods were used to eliminate wavelets with small 

coefficients. 

In the third step, the remaining wavelets are ranked and the wavelets with the highest 

rank are used for the construction of the WN.  

In (Q. Zhang, 1994) and (Q. Zhang, 1997) three alternative methods were proposed 

in order to reduce and rank the wavelets in the wavelet library: Residual Based 

Selection (RBS), Stepwise Selection by Orthogonalization (SSO) and Backward 

Elimination (BE).  

In the framework of RBS, first the wavelet that best fits the output data is selected. 

Then the wavelet that best fits the residual of the fitting of the previous stage is 

repeatedly selected. RBS is considered as a very simple method but not an effective 

one, (Juditsky, Zhang, Delyon, Glorennec, & Benveniste, 1994). However if the 

wavelet candidates reach a very large number, computational efficiency is essential and 

the RBS method may be used, (Juditsky, et al., 1994). In (Kan & Wong, 1998) and  

(Wong & Leung, 1998) the RBS algorithm was used for the synthesis of a WN. In (Xu 

& Ho, 2002) a modified version of the RBS algorithm was used. More precisely an 

Orthogonalized Residual Based Selection (ORBS) algorithm is proposed for the 

initialization of the WN. The ORBS method combines both the RBS and the 

Ortogonalized Least Squares (OLS) method. In this way high efficiency is obtained 

while relatively low computational burden is maintained.  

The SSO method is an extension of the RBS first proposed by (Chen, Billings, & 

Luo, 1989; Chen, Cowan, & Grant, 1991). In order to initialize the WN the following 

procedure is followed: First the wavelet which best fits the output data is selected. Then 

the wavelet that best fits the residual of the fitting of the previous stage together with 

the previous selected wavelet is repeatedly selected. In other words the SSO considers 

the interaction or the non-orthogonality of the wavelets. The selection of the wavelets 

is performed using the modified Gram-Schmidt algorithm that has better numerical 

properties and is computationally less expensive than the ordinary Gram-Schmidt 
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algorithm, (Q. Zhang, 1997). SSO is considered to have good efficiency while it is not 

computationally expensive. In (Oussar & Dreyfus, 2000) an algorithm similar to SSO 

was proposed. 

In contrast to previous methods, the BE starts the regression by selecting all the 

available wavelets from the wavelet library. Then the wavelet that contributes the least 

in the fitting of the training data is repeatedly eliminated. The drawback of BE is that it 

is computationally expensive but it is considered to have good efficiency. 

In (Q. Zhang, 1997) the exact number of arithmetic operations of each algorithm are 

presented. More precisely, for the RSO at each step i  the computational cost is 

2 2 6 1nL in n    where n  is length of the training samples, L  is the number of the 

wavelets in the wavelet basis. Similarly, the computational cost of the SSO algorithm 

at each step is 8 6 9 5nL in n L   . Roughly speaking, the SSO is 4 times more 

computational expensive than the RSO algorithm. Finally, the operations needed in the 

BE method is      2 22 4 8n L i L i iL L i      . In addition at the beginning of the 

BE algorithm an L L  matrix must be inverted. If the number of HUs and as a result 

the number of the wavelets that must be selected is 2HUs L  then less steps are 

performed by the BE algorithm while in the case of 2HUs L  the contrary is true, (Q. 

Zhang, 1997). 

All methods described above are used just for the initialization of the dilation and 

translation parameters. Then the network is further trained in order to obtain the vector 

of the parameters ˆ
nw  w  which minimizes the cost function. 

It is clear that additional computational burden is added in order to initialize 

efficiently the WN. However the efficient initialization significantly reduces the 

training phase hence the total amount of computations is significantly smaller than in a 

network with random initialization. 

 

 

2.3.Training a Wavelet Network with Back-Propagation 
 

After the initialization phase, the network is further trained in order to find the 

weights which minimize the cost function. 

In (Cristea, et al., 2000) genetic algorithms were used to train a WN while in (Li & 

Chen, 2002) a learning algorithm by applying least trimmed squares was proposed. (He, 

et al., 2002) suggest an hierarchical evolutionary algorithm. In (Xu & Ho, 2005) the 

Levenberg-Marquardt algorithm was applied. (Chen, et al., 2006) combine an adaptive 

diversity learning particle swarm optimization and gradient descent algorithms in order 

to train a WN. However, most evolutionary algorithms including particle swarm 

optimization, are inefficient and cannot avoid certain degeneracy and local minimum 

completely, (Z. Zhang, 2009). Also evolutionary algorithms suffer from fine-tuning 

inefficiency, (Chen, et al., 2006; X. Yao, 1999). On the other hand the Levenberg-

Marquardt is one of the fastest algorithms for training NNs. The main drawback of this 

algorithm is that it requires the storage and the inversion of some matrices that can be 

quite large.  

The above algorithms originate from classical sigmoid NNs, as they do not take 

advantage of the properties of wavelets, (Z. Zhang, 2007, 2009). Since a wavelet is a 

function whose energy is well localized in time-frequency, (Z. Zhang, 2007) and (Z. 

Zhang, 2009) use sampling theory in order to train a WN in both uniform and non-
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uniform data. Their results indicate that their proposed algorithm has global 

convergence. 

In our implementation the ordinary back-propagation (BP) was used. BP is probably 

the most popular algorithm used for training WNs, (Fang & Chow, 2006; Jiao, et al., 

2001; Oussar & Dreyfus, 2000; Oussar, et al., 1998; Postalcioglu & Becerikli, 2007; Q. 

Zhang, 1997; Q. Zhang & Benveniste, 1992; Z. Zhang, 2007). Ordinary BP is less fast 

but also less prone to sensitivity to initial conditions than higher order alternatives, (A. 

Zapranis & Refenes, 1999).
 

The basic idea of BP is to find the percentage of contribution of each weight to the 

error. The error 
pe  for pattern p  is simply the difference between the target (

py ) and 

the network output ( ˆ
py ). By squaring and multiplying by ½ we take the pairwise error 

pE  which is used in network training: 
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The weights of the network were trained to minimize the mean quadratic cost function 

(or loss function): 
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Other functions can be used instead of (10) however the mean quadratic cost 

function is the most commonly used. The network is trained until a vector of weights 

ˆ
nw  w  that minimizes the proposed cost function is found. The previous solution 

corresponds to a training sample of size n . Computing the parameter vector ˆ nw  is 

always done by iterative methods. At each iteration t  the derivative of the loss function 

with respect to the network weights is calculated. Then, the updating of the parameters 

is performed by the following (delta) learning rule: 

 

 1 1
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t t t t

t

L
w w w w
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where   is the learning rate and it is constant. The complete vector of the network 

parameters comprises:  [0] [1] [1] [2] [2]

( ) ( ) 1, , , ,i ij ij jw w w w w w   . 

A constant momentum term, defined by  , is induced which increases the training 

speed and helps the algorithm to avoid oscillations. The learning rate and momentum 

speed take values between 0 and 1. The choice of the learning rate and the momentum 

depends on the application and the training sample. Usually, values between 0.1 and 

0.4 are used. 

The partial derivative of the cost function with respect to a weight w is given by: 
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The partial derivatives with respect to each parameter, 
ˆ

py

w




, and with respect to each 

input variable, 
ˆ

p

i

y

x




, are presented in appendix. 

The above training methodology falls to the category of off-line training. This means 

that the weights of the networks are updated after all training patterns are presented to 

the network. Alternatively, one can use on-line training methods. In on-line methods 

the weights are changed after each presentation of a training pattern. For some 

problems, this method may yield effective results, especially for problems where data 

arrives in real time, (Samarasinghe, 2006). Using on-line training it is possible to reduce 

training times significantly. However, for complex problems it is possible, that on-line 

training, to create a series of drawbacks. First, there is a possibility that the training will 

stop before the presentation of each training pattern to the network. Second, by 

changing the weights after each pattern, they could bounce back and forth with each 

iteration, possibly resulting in a substantial amount of wasted time, (Samarasinghe, 

2006). Hence, in order to ensure the stability of the algorithms, offline training is used 

in this study. 

 

 

2.4.Stopping Conditions for Training 
 

 After the initialization phase of the network parameters w , the weights [0]

iw , [2]

jw  and 

parameters [1]

( )ijw   and [1]

( )ijw   are trained during the learning phase for approximating the 

target function. A key decision related to the training of a WN is when the weight 

adjustment should end. Under the assumption that the WN contains the number of 

wavelets that minimizes the prediction risk the training is stopped when one of the 

following criteria is met – the cost function reaches a fixed lower bound or the 

variations of the gradient or the variations of the parameters reaches a lower bound or 

the number of iterations reaches a fixed maximum, whichever is satisfied first. In our 

implementation the fixed lower bound of the cost function, of the variations of the 

gradient and of the variations of the parameters were set to
510
. 

 

2.5. Evaluating the Initialization Methods 

 

As it was mentioned in the previous section the initialization phase is a very 

important on the construction and training of a WN. In this section we compare four 

different initialization methods. The heuristic, the SSO, the RBS and the BE methods, 

that constitute the bases for alternative algorithms and can be used with the BP training 

algorithm, will be tested.  

The four initialization methods will be compared in three stages. First the distance 

between the initialization and the underlying function as well as the training data will 
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be measured. Second the number of iterations needed to train the WN will be compared. 

Finally, the difference of the final approximation of the trained WN and the underlying 

function and the training data will be examined. The four initialization methods will be 

tested in two cases. First on a simple underlying function and second on a more complex 

function that incorporates large outliers. 

 

2.5.1. Example 1 

 

In the first case the underlying function f(x) is given by: 

 

 1( ) 0.5 0.4sin(2 ) ( )  0,1f x x x x                                                                  (13) 

                                                                     

where x is equally spaced in [0,1] and the noise 1( )x  follows a normal distribution 

with mean zero and a decreasing variance: 

 
2 2 2( ) 0.05 0.1(1 ) .x x                                                                                         (14) 

 

The four initialization methods will be examined using a WN with 2 HUs with 

learning rate 0.1 and momentum 0. The choice of the proposed structure of network 

will be justified in the next section. The training sample consists of 1.000 patterns. 

Fig. 2 shows the initialization of the four algorithms for the first training sample. It 

is clear that the heuristic algorithm produces the worst initialization. However, even the 

heuristic approximation is still better than a random initialization. On the other hand 

the initialization of the RBS algorithm gives a better approximation of the data however 

the approximation of the target function ( )f x  is still not very good. Finally, both the 

SSO and the BE algorithms start very close to the target function ( )f x .  

The Mean Square Error (MSE) between the initialization of the network and the 

training data confirms the above results. More precisely the MSE between the 

initialization of the network and the training data is 0.630809, 0.040453, 0.031331 and 

0.031331 for the heuristic, the RBS, the SSO and the BE respectively. Next we will test 

how close the initialization is to the underlying function. The MSE between the 

initialization of the network and the underlying function is 0.59868, 0.302782, 

0.000121 and 0.000121 for the heuristic, the RBS, the SSO and the BE respectively. 

The results above indicate that both the SSO and the BE produce the best initialization 

for the parameters of the WN.  

Another way to compare the initialization methods is to compare the number of 

iterations needed in the training phase until the solution ˆ
nw  is found. Also if the 

proposed initialization methods allow the training procedure to find the global 

minimum of the loss function will be examined.  

First the heuristic method was used to train 100 networks with different initial 

conditions of the direct connections [0]

iw  and weights [2]

jw . Training 100 networks with 

perturbed initial conditions is expected to be sufficient to avoid any possible local 

minimums of the loss function (10). It was found that the smallest MSE between the 

target function ( )f x  and the final approximation of the WN was 0.031331.  

Using the RBS the training phase stopped after 617 iterations. The overall fit was 

very good and the MSE between the network output and the training data was 0.031401 

indicating that the network was stopped before the minimum of the loss function was 
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achieved. Finally, the MSE between the network output and the target function was 

0.000676. 

On the other hand, when initializing the WN with the SSO algorithm only 1 iteration 

was needed in the training phase and the MSE was 0.031331 while the MSE between 

the underlying function ( )f x  and the network approximation was only 0.000121. The 

same results were achieved by the BE method.  Finally, one implementation of the 

heuristic method needed 1501 iterations. All results are presented in Table 1.  

The results above indicate that the SSO and the BE algorithms give the same results 

and significantly outperform both the heuristic and the RBS algorithms. Moreover the 

above results indicate that having a very good initialization not only significantly 

reduces the needed training iterations and as a result the total needed training time but 

also a vector of weights ˆ nw  that minimizes the loss function can be found. 

 

2.5.2. Example 2 
 

Next a more complex case is introduced where the function ( )g x is given by: 

 

 2

2( ) 0.5 sin( ) cos ( ) ( )  6,6g x x x x x x                                                               (15) 

 

and 2 ( )x  follows a Cauchy distribution with location 0 and scale 0.05 and x is equally 

spaced in [-6,6]. The training sample consists of 1.000 training patterns. While the first 

function is very simple the second one, proposed by (Li & Chen, 2002), incorporates 

large outliers in the output space. The sensitivity to the presence of outliers of the 

proposed WN will be tested. To approximate function ( )g x  a WN with 8 HUs with 

learning rate 0.1 and momentum 0 is used. The choice of the proposed topology of the 

WN will be justified in the next section. 

The results obtained in the second case are similar. A closer inspection of Fig. 3 

reveals that the heuristic algorithm produces the worst initialization in approximating 

the underlying function ( )g x . The RBS algorithm produces a significantly better 

initialization than the heuristic method however the initial approximation still differs 

from the training target values. Finally, both the BE and the SSO algorithms produce a 

very good initialization. It is clear that the first approximation of the WN is very close 

to the underlying function ( )g x . 

The MSE between the initialization of the network and the training data was 

7.87472, 0.041256, 0.012813 and 0.008304 for the heuristic, the RBS, the SSO and the 

BE algorithms respectively. Also the MSE between the initialization of the network and 

the underlying function ( )g x  was 7.872084, 0.037844, 0.008394 and 0.004015 for the 

heuristic, the RBS, the SSO and the BE respectively. The previous results indicate that 

the training phase using the BE algorithm starts very close to the target function ( )g x . 

Next the number of iterations needed in the training phase of each method was 

compared. Also, if the proposed initialization methods allow the training procedure to 

find the global minimum of the loss function was examined. The RBS algorithm 

stopped after 3097 iterations and the MSE of the final approximation of the WN and 

the training patterns was 0.004730. The MSE between the underlying function ( )f x  

and the network approximation was 0.000558. When initializing the WN with the SSO 

algorithm only 741 iterations were needed in the training phase and the MSE was 

0.004752 while the MSE between the underlying function ( )g x  and the network 
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approximation was 0.000490. The BE needed 1107 iterations in the training phase and 

the MSE was 0.004364 while the MSE between the underlying function ( )g x  and the 

network approximation was only 0.000074. Finally, one implementation of the 

heuristic method needed 4433 iterations and the MSE was 0.106238 while the MSE 

between the underlying function ( )g x  and the network approximation was 0.102569. 

All results are presented in the second part of Table 1. In the second case the BE was 

slower than the SSO however the final approximation was significantly closer to the 

target function than any other method. 

The previous examples indicate that SSO and BE perform similarly and outperform 

the other two methods whereas BE outperforms SSO in complex problems. Previous 

studies suggest that the BE is more efficient than the SSO algorithm however it is more 

computationally expensive. On the other hand in the BE algorithm the calculation of 

the inverse of the wavelet matrix is needed whose columns might be linear dependent, 

(Q. Zhang, 1997). In that case the SSO must be used. However since the wavelets come 

from a wavelet frame this is very rare to happen, (Q. Zhang, 1997). 

 

3. Model Selection 

 

In this section we describe the model selection procedure. One of the most crucial 

steps is to identify the correct topology of the network. A desired WN architecture 

should contain as few HUs as necessary while at the same time it should explain as 

much variability of the training data as possible. A network with less HUs than needed 

would not be able to learn the underlying function while selecting more HUs than 

needed will result to an over-fitted model. Therefore, an algorithm to select the 

appropriate WN model for a given problem is necessary to be derived. 

The usual approaches proposed in the literature are the early stopping, regularization 

and pruning. However all these methods have serious drawbacks. In early stopping 

method a more complex model than needed is used. Hence, a large number of weights 

must be trained. As a result large training times are expected. Moreover, the network 

incorporates a large number of connections most of them with small weights. In 

addition, a validation sample should be used, however, usually there is only a small 

amount of data available and splitting the data is not useful. Furthermore, growing 

validation errors indicate the reduction of network’s complexity, (Anders & Korn, 

1999). Finally, the solution ˆ nw  of the network is highly dependent on the dividing of 

the data and the initial conditions, (Dimopoulos, Bourret, & Lek, 1995). 

In regularization the penalty terms usually are chosen arbitrary without any 

theoretical justification, (Anders & Korn, 1999). Moreover a bad regularization 

parameter,  , can severely restrict the growth of weights and as result the network will 

be under-fitted, (Samarasinghe, 2006). Finally in pruning methods the significance of 

each weight usually is not measured in a statistical way, (Anders & Korn, 1999). (Reed, 

1993) presents an extensive survey on pruning methods. One of the disadvantages of 

pruning methods is that most of them do not take into account correlated weights. Two 

weights that cancel out each other do not have any effect at the output of the network 

however each weight may have a large effect, (Reed, 1993). Also the time when the 

pruning should stop is usually arbitrary, (Reed, 1993). 

In contrast to previous constructive methods, on-line approaches do not require to 

determine the number of wavelets before the start of the training, (Wong & Leung, 

1998). On-line training and synthesis methods allow the parameters to be updated after 

the presentation of each training pattern. New wavelets are added to the network when 



Preprint – Published in Neural Networks, 42, pp. 1-27, 2013 

 

it is needed while wavelets that do not contribute to the performance of the network 

anymore are removed. In (Cannon & Slotine, 1995) and (Wong & Leung, 1998) online 

synthesis in the construction of the WN was used. Similarly, in (Xu & Ho, 1999) a WN 

proposed and introduced for adaptive nonlinear system identification In (Xu & Ho, 

1999) the basis functions were selected on-line according to the local spatial frequency 

content of the approximated function. However the results from (Wong & Leung, 1998) 

indicate that this method is very prone to the initialization of the WN. Their results 

indicate that the suggested topology of a particular function approximation was varying 

from 4 to 10 HUs. 

The previous methods do not use an optimal architecture of a WN. A very large WN 

is used and then various methods were developed to avoid over-fitting. Smaller 

networks usually are faster to train and need less computational power to build, (Reed, 

1993). 

Alternative the Minimum Prediction Risk (MPR) principle can be applied, (Efron & 

Tibshirani, 1993; A. Zapranis & Refenes, 1999). The idea behind MPR is to estimate 

the out-of-sample performance of incrementally growing networks. Assuming that the 

explanatory variables x  were correctly selected and remain fixed, then the model 

selection procedure is the following: the procedure starts with a fully connected 

network with 0 HUs. The WN is trained and then the prediction risk is estimated. Then, 

iteratively a new HU is added to the network. The new WNs are trained and the new 

prediction risk is estimated at each step. The number of HUs that minimizes the 

prediction risk is the appropriate number of HUs that should be used for the 

construction of the WN. 

The prediction risk measures the generalization ability of the network. More 

precisely, the prediction risk of a network ˆ( ; )ng x w  is the expected performance of 

the network on new data that were not introduced during the training phase and is given 

by: 
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                                                                                          (16) 

 

where  * *,p pyx  are the new observations that have not been used in the construction of 

the network ˆ( ; )ng x w  and *ˆ
py  is the network output using the new observations, 

*( ; )g x w .  

However finding a statistical measure that estimates the prediction risk is not a 

straightforward procedure. Since there is a linear relationship between the wavelons 

and the output of the WN, (Q. Zhang, 1993, 1994, 1997; Q. Zhang & Benveniste, 1992) 

propose the use of information criteria previously widely applied in linear models. More 

precisely, (Q. Zhang, 1994) suggested that the Akaike’s Final Prediction Error (FPE) 

can be used in various applications. More recently, (Q. Zhang, 1997) suggested that the 

Generalized Cross-Validation (GCV) is an accurate tool for selecting the number of 

wavelets that constitutes the WN topology. In order to estimate the GCV the noise 

variance must be identified. In practice the noise variance 
2  is not known. In that case 

it has to be estimated. An estimate is given by the MSE between the network output 

and the target data, (Q. Zhang, 1997).  

Because we do not have an a priori knowledge of the correct number of HUs or 

parameters of the WN we estimate the above criteria iteratively. Τhe computational cost 
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of these algorithms can be expressed as a function of WNs to be trained. For example, 

to estimate the prediction risk using the FPE or the GVC from 1 to 5 HU, 5 WNs must 

be trained. 

The criteria described above for the estimation of the prediction risk are derived from 

linear models. Usually these models are based on assumptions that are not necessarily 

true in the framework of nonlinear nonparametric estimation. The hypothesis behind 

these information criteria is the asymptotic normality of the maximum likelihood 

estimators hence the information criteria are not theoretically justified for over-

parameterized networks, (Anders & Korn, 1999). 

Moreover, in fitting problems more complex than the least squares the number of 

parameters k  is not known, (Efron & Tibshirani, 1993) and it is unclear how to compute 

the degrees of freedom, (Curry & Morgan, 2006), or the effective number of parameters 

described in (Moody, 1992). 

 In (A. Zapranis & Refenes, 1999)  a different approach  is presented. An analytical 

form of the prediction risk (16) was presented for the sigmoid NNs. However, the 

assumptions made by (A. Zapranis & Refenes, 1999) are not necessarily true in the 

framework of WNs and analytical forms are not available for estimating the prediction 

risk for WNs. Alternatively the use of sampling methods such as bootstrap and cross-

validation can be employed since they do not depend on any assumptions regarding the 

model, (Efron & Tibshirani, 1993). The only assumption made by sampling methods is 

that the data are a sequence of independent and identically distributed variables. 

Another advantage of bootstrap and cross-validation is their robustness. In contrast to 

sampling methods both GCV and FPE require a roughly correct model to obtain the 

estimate of the noise variance.  

The bootstrap and the ν-fold cross-validation approaches are analytically described 

in (Efron & Tibshirani, 1993). It is known that the simple estimation of the bootstrap 

approach is not very accurate, (Efron & Tibshirani, 1993). Hence, we estimate the 

improved estimation of the prediction risk following the suggestion of (Efron & 

Tibshirani, 1993). The number of new samples B  is usually over 30, (Aczel, 1993; 

Efron & Tibshirani, 1993). It is clear that as the number of new samples B  increases 

the bootstrap method becomes more accurate but also more computationally expensive. 

Cross-validation is an another standard tool for estimating the prediction error  that 

makes an efficient use of the available information, (Efron & Tibshirani, 1993). The ν-

fold cross-validation is applied as described in (Efron & Tibshirani, 1993). Again, it is 

expected that as the ν increases and the new samples B  increase, the accuracy of the ν-

fold cross-validation to increase but the method becomes computationally expensive. 

More precisely, the computational burden of the bootstrap and the ν-fold cross-

validation methods are B  times the computational cost of the FPE and GCV methods. 

 

3.1.Evaluating the Model Selection Algorithm 
 

In order to find an algorithm that will work well with WNs and will lead to a good 

estimation of prediction risk we will compare, in this section, the various criteria as 

well as the sampling techniques discussed earlier. 

More precisely, in this study we will compare the sampling techniques that are 

extensively used in various studies with sigmoid NNs and two information criteria 

previously proposed in the construction of a WN. More precisely, the FPE proposed by 

(Q. Zhang, 1994), the GCV proposed by (Q. Zhang, 1997), the bootstrap (BS) and the 
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v-fold cross-validation (CV) methods proposed by (Efron & Tibshirani, 1993) and (A. 

Zapranis & Refenes, 1999) will be tested. 

In order to evaluate each method the following procedure will be followed. First, the 

prediction risk according to each method will be estimated for a large number of HUs. 

Then the number of HUs that minimizes the prediction risk will be selected for the 

construction of the WN. The WN will be fully trained. Finally the MSE between the 

WN output and the target function will be estimated. The best network topology will 

be considered the one that produces the smallest MSE and shows no signs of over-

fitting. 

The four methods are evaluated using the functions ( )f x  and ( )g x  given by (13) 

and (15) respectively. Both training samples consist of 1.000 training patterns as in to 

the previous section. The WNs are trained with the BP algorithm with learning rate 0.1 

and zero momentum. In order to estimate the prediction risk using the BS approach 50 

new networks were created for each HU ( 50)B  . Similarly, the prediction risk using 

the CV method was estimated using 50 subsamples for each HU. In other words the 50-

fold cross validation was used, ( 50)v  . All WNs were initialized using the BE 

algorithm since our results in the previous sections indicate that the BE outperforms the 

alternative algorithms. 

 

3.1.1. Example 1 
 

Table 2 presents the prediction risk and the suggested HUs for each information 

criterion for the two functions described previously. In the first case we estimate the 

prediction risk for a WN with zero HUs and iteratively one HU is added until a 

maximum number of 15 HUs. Three of the four criteria, the FPE the BS and the CV 

suggest that a WN with only 2 HUs is sufficient to model function ( )f x . On the other 

hand, using the GCV, the prediction risk is minimized when a WN with 3 HUs is used. 

Fig. 4 shows the approximation of the WN to the training data using (a) 1 HU (b) 2 

HUs and (c) 3 HUs. Part (d) of Fig. 4 shows the training data and the target function 

( )f x . It is clear that a WN with only 1 HU cannot learn the underlying function. On 

the other hand the WNs with 2 and 3 HUs approximate the underlying function very 

well. However when 3 HUs are used the network approximation is affected by the large 

variation of the noise in the interval [0, 0.25]. In order to confirm the above results the 

MSE between the output of the WN and the underlying target function ( )f x  is 

estimated. The MSE is 0.001825 when a WN with only one HU is used. Adding one 

more HU, two in total, the MSE is reduced to only 0.000121. Finally, when 3 HUs are 

used the MSE increased to 0.000267. Hence, 2 wavelets should be used to construct a 

WN to approximate function ( )f x . The results above indicate that the GCV suggested 

a more complex model than needed. Moreover a WN with 3 HUs shows signs of over-

fitting.  

From Table 2 it is shown that the FPE criterion suggests 2 HUs however the 

prediction risk is only 0.02088 in contrast to GCV, BS and CV which is 0.03966, 

0.04002 and 0.03991 respectively. In order to find the correct magnitude of the 

prediction risk a validation sample is used to measure the performance of the WN with 

2 HUs in out-of-sample data. The validation sample consists of 300 patterns randomly 

generated by (13). These patterns were not used for the training of the WN. The MSE 

between the network forecasts and the validation targets is 0.048751 indicating that the 

FPE criterion is too optimistic on the estimation of the prediction risk. 
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3.1.2. Example 2 
 

In the second part of Table 2 the results for the second example are presented. As in 

the first case, the prediction risk for a WN with zero HUs is estimated and iteratively 

one HUs is added to the WN until a maximum number of 15 HUs is reached. The FPE 

criterion suggests that 7 HUs is appropriate for modeling the function ( )g x . On the 

other hand, using the GCV, the prediction risk is minimized when a WN with 14 HUs 

is used. Finally using the BS and the CV criteria the prediction risk is minimized when 

a WN with 8 HUs is used. In Fig. 5 the approximation of the WN to the training data 

using (a) 7, (b) 8 and (c) 14 HUs is presented. Part (d) of Fig. 5 shows the target function 

( )g x  and the training data. It is clear that all networks produce similar results. In order 

to compare the above results, the MSE between the output of the WN and the 

underlying target function ( )g x  was estimated. The MSE is 0.000239 when a WN with 

only 7 HUs is used. Adding one more HU, 8 in total, the MSE is reduced to only 

0.000074. Finally, when 14 HUs are used the MSE increased to 0.000154. Hence, the 

optimum number of wavelet to approximate function ( )g x  is 8. The results above 

indicate that the GCV suggests a more complex model while FPE suggest a simpler 

model than needed. Our results indicate that the sampling techniques outperform the 

information criteria again. 

As reported in Table 2, the estimated prediction risk proposed by the FPE criterion 

is 0.00041 in contrast to GCV, BS and CV which is 0.00077, 0.00081 and 0.00078 

respectively. In order to find the correct magnitude of the prediction risk a validation 

sample is used to measure the performance of the WN with 8 HUs in out-of-sample 

data. The validation sample consists of 300 patterns randomly generated by (15). These 

patterns were not used for the training of the WN. Our results indicate again that the 

FPE criterion is too optimistic on the estimation of the prediction risk.  

A closer inspection of Fig. 5 reveals that the WN approximation was not affected by 

the presence of large outliers in contrast to the findings of (Li & Chen, 2002). In this 

study 8 HUs were used to construct the WN as it was proposed by ν-fold cross-

validation and the BS while in (Li & Chen, 2002) the architecture of the WN had 10 

HUs as it was proposed by the FPE criterion. Our results indicate that the FPE criterion 

does not perform as well as sampling techniques (bootstrap or ν-fold cross-validation). 

 

3.1.3. Model Selection without Training 
 

In (Q. Zhang, 1997) the estimation of the preferred information criteria is performed  

after the initialization stage of the network. More precisely in the SSO and RBS the 

preferred information criteria is evaluated after the selection of each wavelet in the 

initialization stage. Similarly, when the BE algorithm is used, the preferred information 

criteria is evaluated after the elimination of each wavelet in the initialization stage. 

Since the initialization of the WN is very good, as presented in the previous section, the 

initial approximation is expected to be very close to the target function. Hence, a good 

approximation of the prediction risk is expected to be obtained. The same idea can also 

be applied when the BS or the CV are used. The above procedure is significantly less 

computational expensive. 

However, the above procedure is similar to early stopping techniques. Usually early 

stopping techniques suggest a network with more HUs than necessary, though the 



Preprint – Published in Neural Networks, 42, pp. 1-27, 2013 

 

network is not fully trained to avoid over-fitting, (Samarasinghe, 2006), while they do 

not work satisfactorily in complex problems, (Samarasinghe, 2006). 

In the first case the results were similar to the case where the WNs were fully trained. 

More precisely, the FPE, the BS and the CV methods suggested that a WN with 2 HUs 

is sufficient to model ( )f x  while GCV suggested a WN with 3 HUs. In the second case 

both the information criteria and the sampling techniques suggested that a WN with 

more than 14 HUs is needed to model function ( )g x . The results above indicate that 

when more complex problems are introduced, as in the second case, this method does 

not work satisfactorily. 

Since sampling techniques are computationally expensive methods, the FPE 

criterion can be used initially. Then the BS or the CV methods can be used in +/-5 HU 

around the HUs proposed by FPE in order to define the best network topology. 

 

4. Variable Selection 

 

In real problems it is important to determine correctly the independent variables. In 

most problems there is a little information about the relationship of any explanatory 

variable with the dependent variable. As a result unnecessary independent variables are 

included in the model reducing its predictive power. In this section various methods for 

testing the significance of each explanatory variable will be presented and tested. The 

purpose of this section is to find an algorithm that constantly gives stable and correct 

results when it is used with WNs.  

In linear models in order to determine if a coefficient, and as a result an input variable, 

is significant the t-stats or the p-values of each coefficient are examined. Applying the 

previous method in WNs is not a straightforward process since the coefficients 

(weights) are estimated iteratively and each variable contribute to the output of the WN 

linearly through the direct connections and nonlinearly through the HUs. 

Instead of removing the irrelevant variables one can reduce the dimensionality of the 

input space. An effective procedure for performing this operation is the PCA. PCA has 

many advantages and has been applied in many application with great success, 

(Khayamian, et al., 2005). In applications where WNs are used for prediction of future 

values of a target variable PCA can be proved very useful. On the other hand in 

applications where WNs are used for function approximation or sensitivity analysis 

PCA can be proved cumbersome. The main disadvantage of PCA is that the principal 

components are usually a combination of all the available variables. Hence, it is often 

very difficult to distinguish which variable is important and which is not statistical 

significant. In addition, extra care must be taken when linking the information resulted 

from principal components to the original variables. 

PCA cannot always be used since a linear transformation among the explanatory 

variables is not always able to reduce the dimension of the dataset. Another 

disadvantage of the PCA is the fact that the directions maximizing variance do not 

always maximize information. Finally, PCA is an orthogonal linear transformation 

however the use of a WN implies a nonlinear relationship between the explanatory 

variables and the dependent variable. 

In (Wei, Billings, & Liu, 2004) a novel approach for term and variable selection is 

presented. This method applies locally linear models together with orthogonal least 

squares in order determine which of the input variables are significant. This algorithm 

ranks the variables and determines the amount of the system output variance that can 

be explained by each term. The method assumes that non-linearities in the system are 

relatively smooth. Then local linear models are fitted in each interval. However the 
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number of the locally linear models increases exponentially as the number of intervals 

for each independent variable is increased, (Wei, et al., 2004). Also, selecting the 

optimal operating regions for the locally piecewise linear models usually is 

computational expensive, (Wei, et al., 2004). 

A similar approach is presented in (Wei & Billings, 2007) based on feature subset 

selection. In feature selection an optimal or suboptimal subset of the original features 

is selected, (Mitra, Murthy, & Pal, 2002). More precisely, in (Wei & Billings, 2007) a 

forward orthogonal search algorithm by maximizing the overall dependency is 

presented in order to detect the significant variables. This algorithm can produce 

efficient subsets with a direct link back to the underlying system. The proposed method 

assumes a linear relationship between sample features. However, this is assumption is 

not always true and will lead to a wider subset of explanatory variables. 

Alternatively one can quantify the average effect of each input variable, 
jx , on the 

output variable, y . Estimating the sensitivity of the WN output according to small input 

perturbations of variable jx  can be done either by applying the average derivative 

(AvgD) or the average elasticity (AvgL) where the effect is presented as a percentage 

and are given by the following equations: 
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Although AvgL conveys more information, in both criterions cancellations between 

negative and positive values are possible. A natural extension of the above criterions is 

the average derivative magnitude (AvgDM) and the average elasticity magnitude 

(AvgLM) given by 

 

1

ˆ1
( )

n

j

i ij

y
AvgDM x

n x





                                                                                   (19) 

and 

1

ˆ1
( )

ˆ

n
ij

j

i ij

xy
AvgLM x

n x y

  
   

    
                                                                       (20) 

Equation (17)-(20) utilizes the average derivative of the output of the WN with 

respect to each explanatory variable. As in averaging procedure a lot of information is 

lost additional criteria are introduced. 

The maximum and minimum derivative (MaxD, MinD) or the maximum and 

minimum derivative magnitude (MaxDM, MinDM) give additional insight of the 

sensitivity of the WN output to each explanatory variable. However, these criteria 

usually cannot be used on their own since they are appropriate only for some 

applications and are sensitive to inflection points, (A. Zapranis & Refenes, 1999). The 

mathematical expressions of the above criteria can be found in (A. Zapranis & Refenes, 

1999). 

Alternatively to sensitivity criteria, model fitness criteria such as the Sensitivity 

Based Pruning (SBP) proposed by (Moody & Utans, 1992) can be used. The SBP 
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method quantifies a variable’s relevance to the model by the effect on the empirical loss 

of the replacement of that variable by its mean. The SBP is given by: 
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Additional criteria can be used like the ones presented in (Dimopoulos, et al., 1995). 

For additional information on the criteria presented above we refer to (A. Zapranis & 

Refenes, 1999). 

 

4.1.An Algorithm for Selecting the Significant Variables 
 

In order to statistically test whether a variable is insignificant and can be removed 

for the training dataset or not the distributions of the criteria presented in the previous 

section are needed. Without the distribution of the preferred measure of relevance it is 

not clear if the effects of the variable ix  on y  are statistically significant, (A. Zapranis 

& Refenes, 1999). More precisely, the only information obtained by criteria described 

in the previous section is how sensitive is the dependent variable to small perturbations 

of the independent variable. It is clear that the smaller the value of the preferred criterion 

the less significant is the corresponding variable. However there is no information if 

this variable should be removed from the model or not.  

In order to approximate asymptotically the distribution of the measures of relevance 

we use the bootstrap method. More precisely, a number of bootstrapped training 

samples can be created by the original training dataset. The idea is to estimate the 

preferred criterion on each bootstrapped sample. If the number of the bootstrapped 

samples is large then a good approximation of the empirical distribution of the criterion 

is expected to be achieved. Obtaining an approximation of the empirical distributions, 

confidence intervals and hypothesis tests can be constructed for the value of the 

criterion. The variable selection algorithm is analytically explained bellow and is 

illustrated in Fig. 6. 

The procedure is the following: The algorithm starts with the training sample that 

consists of all available explanatory variables.  

The first step is to create B  bootstrapped training samples from the original dataset.  

The second step is to identify the correct topology of the WN following the 

procedure described in the previous section and estimate the prediction risk.  

The third step is to estimate the preferred measure of relevance for each explanatory 

variable for each one of the B  bootstrapped training samples.  

The fourth step is to calculate the p-values of the measure of relevance.  
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The fifth step is to test if any explanatory variables have a p-value greater than 0.1 

If variables with a p-value greater than 0.1 exist then the variable with the largest p-

value is removed from the training dataset else the algorithm stops.  

The sixth step is to estimate the prediction risk and the new p-values of the reduced 

model. If the new estimated prediction risk is smaller than the prediction risk multiplied 

by a threshold (usually 1.05) then the decision of removing the variable was correct and 

we return to the fifth step.  

If the new prediction risk is greater than the new prediction risk multiplied by a 

threshold (usually 1.05) then the decision of removing the variable was wrong and the 

variable must be reintroduced to the model. In this case the variable with the next largest 

p-value which is also greater than 0.1 is removed from the training sample and we return 

to step six. If the remaining variables have p-values smaller than 0.1 then the algorithm 

stops. 

In order to have a good estimation of the prediction risk as well as an approximation 

of the distribution of the measure of relevance, a large number of bootstrapped samples 

B  is needed. As B  increases the accuracy of the algorithm also increases but also 

increases the computational burden. In (A. Zapranis & Refenes, 1999) two different 

bootstrap methods were presented, the local bootstrap and the parametric sampling, that 

are significantly less computationally expensive. However, the bootstrapped samples 

may significantly differ from the original sample. Hence, applying local bootstrap or 

parametric sampling may lead to wavelets outside their effective support, i.e. wavelets 

with value of zero, since wavelets are local functions with limited duration. In addition, 

in contrast to the case of NNs, the asymptotic distribution of the weights of a WN is not 

known. These observations constitute both local bootstrap and parametric sampling 

inappropriate for WNs.  

Alternatively new samples from training patterns can be constructed. This can be 

done by applying bootstrap from pairs and train a WN for each sample. Since, the 

initialization of a WN is very good this procedure is not of a prohibited computational 

cost. The computational cost of this algorithm is the number of the WNs that must be 

trained which is B . 

 

4.2.Evaluating the Variable Significance Criteria 
 

In this section the algorithm proposed in the previous section for selecting the 

significant explanatory variables will be evaluated. More precisely, the eight sensitivity 

criteria and the model fitness sensitivity criterion will be evaluated in the two functions, 

( )f x  and ( )g x given by (13) and (15) respectively. 

 

4.2.1. Example 1 
 

First a second variable is created which was randomly drawn from the uniform 

distribution within the range (0,1). Both variables are considered significant and 

constitute the training patterns  ,i iyx  of the training dataset where  1, 2,,i i ix xx and 

iy  are the target values. A WN is trained in order to learn the target function ( )f x  were 

both 1x  and 2x  are introduced to the WN as inputs patterns. The BE algorithm was used 

for the initialization of the WN. Using CV and BS the prediction risk is minimized 
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when 3 HUs are used and it is 0.04194. The network converges after 3502 iterations. 

Comparing the results with the findings in previous section it is clear that including an 

irrelevant variable to our model increases the model complexity and the training time 

while the predictive power of the model is reduced. 

Next, the algorithm described in the previous section will be applied in order to 

estimate the p-values of each criterion. More precisely, the BS method will be applied 

in order to estimate the asymptotic distributions of the various criteria. In order to 

approximate the empirical distributions of the various criteria 50 new bootstrapped 

samples were created and their corresponding p-values are presented in Table 3 .  A 

closer inspection of Table 3 reveals that the MaxD, MinD, MaxDM, MinDM, AvgDM 

and AvgLM suggest that both variables are significant and must remain on the model. 

On the other hand, the p-values obtained using the AvgL criterion wrongly suggests 

that the variable 1x  must be removed from the model. Finally, the SBP and AvgD 

correctly suggest that 2x  must be removed from the model. More precisely the p-values 

obtained using the AvgD are 0.0614 and 0.3158 for 1x  and 2x  respectively while the 

p-values obtained using the SBP are 0 and 0.9434 for 1x  and 2x  respectively. Finally, 

the p-value of 1x  using the SBP in the reduced model is 0 indicating that 1x  is still very 

significant. However, while the average value of SBP is almost the same in the full and 

the reduced model, the average value of AvgD is completely different in magnitude and 

sign. 

The correctness of removing a variable from the model should always be further 

tested. As it was discussed in the previous section this can be done either by estimating 

the prediction risk or the 2R of the reduced model. The prediction risk in the reduced 

model was reduced to 0.0396 while it was 0.0419 in the full model. Moreover the 2R  

increased to 70.8% in the reduced model while it was 69.8% in the full model. The 

results indicate that the decision to remove 2x  was correct. 

 

4.2.2. Example 2 
 

The same procedure is repeated for the second case where a WN is used to learn the 

function ( )g x  from noisy data. First a second variable is created which was randomly 

drawn from the uniform distribution within the range (0,1). Both variables are 

considered significant and constitute the training patterns. A WN is trained in order to 

learn the target function ( )g x  were both 1x  and 2x  are introduced to the WN as inputs 

patterns. The BE algorithm was used for the initialization of the WN. Using CV and 

BS the prediction risk is minimized when 10 HUs are used and it is 0.00336. The 

network approximation converges after 18811 iterations. Again the inclusion of an 

irrelevant variable to our model increased the model complexity and the training time 

while the predictive power of the model was reduced. 

Next, we estimate the p-values of the various criteria for the second case. The 

standard deviation and the p-values for all sensitivity and model fitness measures for 

the two variables of the second case are presented Table 4 

In Table 4 the analysis for the second case is presented. A closer inspection of Table 

4 reveals that MaxD, MinD, AvgDM, and AvgLM suggest that both variables are 

significant and must remain in the model. On the other hand, the p-values obtained 

using the AvgL and AvgD criteria wrongly suggest that the variable 1x  must be 
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removed from the model. Finally, the SBP, MaxD and Min DM correctly suggest that 

2x  is not a significant variable and can be removed from the model. More precisely the 

p-values obtained using the MaxDM are 0 and 0.1597 for 1x  and 2x  respectively while 

the p-values obtained using the MinDM are 0.2867 and 0.4158 for 1x  and 2x  

respectively. Finally, the p-values obtained using the SBP are 0 and 0.8433 for 1x  and 

2x  respectively. Examining the reduced model, where only 1x  is used for the training 

of the WN, the p-values are 0 for 1x  when the MaxDM or the SBP criteria are used. On 

the other hand the p-value for 1x  is 0.1795, when the MinDM is used, indicating that 

1x  is insignificant and should be also removed from the model. 

Next, the correctness of removing a variable from the model is further tested. As it 

was discussed in the previous section this can be done either by estimating the 

prediction risk or the 2R of the reduced model. The prediction risk in the reduced model 

was reduced to 0.0008 while it was 0.0033 in the full model. Moreover the 2R  increased 

to 99.7% in the reduced model while it was 99.2% in the full model. 

The results from the previous simulated experiments indicate that the SBP gives 

constantly correct and robust results. In every case the SBP criterion correctly 

indentified the irrelevant variable. Moreover the SBP criterion was stable and had the 

same magnitude and sign in both the full and reduced model.  

The results of the previous cases indicate that when our algorithm is applied and the 

p-values are estimated, the performance of the remaining sensitivity criteria is unstable. 

In general the sensitivity criteria were not able to identify the insignificant variable. 

Moreover, they often suggested the removal of the significant variable 1x . The 

sensitivity criteria are application dependent and extra care must be taken when used, 

(A. Zapranis & Refenes, 1999). As their name suggest they are more appropriate for 

use in sensitivity analysis rather in variable significance testing. 

 

5. Modeling The Uncertainty 

 

In the previous sections a framework were a WN can efficiently be constructed, 

initialized and trained was presented. In this section this framework is expanded by 

presenting two methods for estimating confidence and prediction intervals. The output 

of the WN is the approximation of the underlying function ( )f x  obtained from the 

noisy data. In many applications and especially in finance, risk managers may be more 

interested in predicting intervals for future movements of the underlying function ( )f x  

than simply point estimates. 

In real data sets the training patterns usually are inaccurate since they contain noise 

or they are incomplete due to missing observations. Especially financial time series as 

well as temperature time series are dominated by these characteristics. As a result the 

validity of the predictions of our model (as well as of any other model) is questioned. 

The uncertainty that results from the data contributes to the total variance of the 

prediction and it is called the data noise variance, 2

 , (Breiman, 1996; Carney, 

Cunningham, & Bhagwan, 1999; Heskes, 1997; Papadopoulos, Edwards, & Murray, 

2000).  

On the other hand presenting to a trained network new data that were not introduced 

to the WN during the training phase, additional uncertainty is introduced to the 

predictions. Since the training set consist of a finite number of training pairs, the 
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solution ˆ nw  is likely not to be valid in regions not represented in the training sample, 

(Papadopoulos, et al., 2000). In addition, the iterative algorithm that is applied to train 

a network, often results to local minima of the loss function. This source of uncertainty 

that arises from misspecifications in model or parameter selection as well as from 

limitation of the training algorithm contributes also to the total variance of the 

prediction and it is called the model variance, 2

m , (Papadopoulos, et al., 2000). 

The model variance and the data noise variance are assumed to be independent. The 

total variance of the prediction is given by the sum of two variances: 

 
2 2 2  .p m                                                                                                             (24) 

 

If the total variance of a prediction can be estimated then it is possible to construct 

confidence and prediction intervals. The rest of the section is dedicated to this purpose. 

In the framework of classical sigmoid NNs the proposed methods for constructing 

confidence and prediction intervals falls into 3 major categories: the analytical the 

Bayesian and the ensemble networks methods. 

Analytical methods provide good prediction intervals, only if the training set is very 

large, (De Veaux, Schumi, Schweinsberg, & Ungar, 1998). They are based on the 

assumptions that the noise in the data is independent and identically distributed with 

mean zero and constant standard deviation. In real problems the above hypothesis 

usually does not hold. As a result there will be intervals where the analytical method 

either overestimates or underestimates the total variance. Finally, on analytical methods 

the effective number of parameters must be identified although pruning schemes like 

the Irrelevant Connection Elimination scheme can be used to solve this problem. On 

the other hand, Bayesian methods are computationally expensive methods that need to 

be tested further, (A. Zapranis & Refenes, 1999; Ζαπράνης, 2005). Results from 

(Papadopoulos, et al., 2000) indicate that the use of Bayesian methods and the increase 

in the computational burden is not justified by their performance. Finally, analytical 

and Bayesian methods are computationally complex since the inverse of the Hessian 

matrix must be estimated which under certain circumstances can be very unstable. 

 Finally, ensemble network methods create different versions of the initial network 

and then they combine the outputs to provide constancy to the predictor by stabilizing 

the high variance of a NN. In ensemble network methods the new versions of the 

network usually are created using bootstrap. The only assumption needed is that the 

NN provides an unbiased estimation of the true regression. Moreover, ensemble 

networks can handle non-constant variance. We suppose that the total variance of the 

prediction is not constant and is given by: 

 
2 2 2( ) ( ) ( ) .p m    x x x                                                                                           (25) 

 

Two of the most often cited methods is the bagging, (Breiman, 1996), and balancing 

method, (Carney, et al., 1999; Heskes, 1997). In this section we adapt these two 

methods in order to construct confidence and prediction intervals under the framework 

of WNs. A framework similar to the one presented in (Carney, et al., 1999) to estimate 

the total prediction variance, 2

p  and construct confidence and prediction intervals is 

adapted.  
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5.1.Confidence Intervals 
 

To generate confidence intervals the distribution of the accuracy of the network 

prediction to the true underlying function is needed. In other words the variance of the 

distribution of  

 

 ˆ ˆ( ) ( ) ,  .nf y f g  x x x w                                                                                  (26) 

 

must be estimated. 

The model variance 2

m  will be estimated using two different bootstrap methods, the 

bagging method proposed by (Breiman, 1996) and the balancing method proposed by 

(Heskes, 1997) and (Carney, et al., 1999). Both methods are variation of the bootstrap 

method. 

First B=200 new random samples with replacement are created from the original 

training sample. Each new sample is used to train a new WN with the same topology 

as the original one, (* ) (* )ˆ( ; )i ig x w , where (* )i  indicates the 
thi  bootstrapped sample 

and 
(* )ˆ i

w  is the solution of the 
thi  bootstrapped sample. Then each new network is 

evaluated using the original training sample x . Next the average output of the B  

networks is estimated by: 

 

 (* )

,

1

1
ˆ( ) ;  .

B
i
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g g
B

 


 x x w                                                                                   (27) 

 

It is assumed that the WN produces an unbiased estimate of the underlying function

( )f x . This means that the distribution of  ,( ) | ( )avgP f gx x  is centered on the estimate 

, ( )avgg x , (Carney, et al., 1999; Heskes, 1997; A. D. Zapranis & Livanis, 2005). Since, 

the WN is not an unbiased estimator (as any other model) it assumed that the bias 

component arising from the WN is negligible in comparison to the variance component, 

(Carney, et al., 1999; A. D. Zapranis & Livanis, 2005). Finally, if we assume that the 

distribution of  ,( ) | ( )avgP f gx x  is normal then the model variance can be estimated 

by: 
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x x w x                                                            (28) 

 

In order to construct confidence intervals the distribution of  , ( ) | ( )avgP g f x x  is 

needed. Since the distribution of  ,( ) | ( )avgP f gx x  is assumed to be normal then the 

“inverse” distribution  , ( ) | ( )avgP g f x x  is also normal. However this distribution is 

unknown. Alternatively it is empirically estimated by the distribution of 

 ,( ) | ( )avgP g g x x , (Carney, et al., 1999; A. D. Zapranis & Livanis, 2005). Then the 

confidence intervals are given by: 
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2 2

, ,
ˆ ˆ( )a aavg m avg mg t f g t     x x x                                                                 (29) 

 

where 
2

at  can be found in a Student’s t table and 1 a  is the desired confidence level. 

However the estimator of the model variance, 2ˆ
m , given by (28) is known to be 

biased, (Carney, et al., 1999), as a result wider confidence intervals will be produced. 

(Carney, et al., 1999) proposed a balancing method to improve the model variance 

estimator.  

The B  bootstrapped samples are divided in M  groups. More precisely the 200 

ensemble samples are divided in 8 groups of 25 samples each. Next the average output 

of each group is estimated:  

 

  ( )

, 1
 .

M
i

avg i
g


 x                                                                                                  (30) 

 

The model variance is not estimated just by the M ensemble output since this 

estimation will be highly volatile, (Carney, et al., 1999). In order to overcome this, a 

set of 1000P   bootstraps of the values of ζ are created: 
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1

P

j j
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                                                                                                               (31) 

                                                                                                      

where 

 

      * (* 1) (* 2) (* )

, , ,, ,...,j j jM
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is a bootstrapped sample of ζ. Then the model variance is estimated on each one of 

these sets by 
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where 
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Then the average model variance is estimated by taking the average of all  2*ˆ
j x : 

 

   2 2*

1

1
ˆ ˆ  .

P

m j
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 x x                                                                                           (35) 

 

This procedure is not computationally expensive since there is no need to train new 

networks. Hence, the complexity of both methods is similar and depends of the number 

B  of the WNs that must be trained. 

Following the same assumptions as in the bagging method, confidence intervals can 

be constructed. Since a good estimator of the model variance is obtained the improved 

confidence intervals using the balancing methods are given by: 
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2 2

, ,
ˆ ˆ( )  .a aavg m avg mg z f g z     x x x                                                            (36) 

 

where 
2

az  can be found in a standard Gaussian distribution table and 1 a  is the desired 

confidence level. 

 

5.2.Prediction intervals 
 

To generate prediction intervals the distribution of the accuracy of the network 

prediction to target values is needed. In other words the variance of the distribution of 

 

 ˆ ˆ, ny y y g   x w                                                                                                 (37) 

 

must be estimated. 

In order to construct prediction intervals the total variance of the prediction, 2

p , 

must be estimated. As it was presented earlier the total variance of the prediction is the 

sum of the model variance and the data noise variance. In the previous section a method 

for estimating the model variance was presented. Here we emphasize on a method for 

estimating the data noise variance. 

In order to estimate the noise variance 2

  maximum likelihood methods are used. 

First, the initial WN, ˆ( ; )ng x w , is estimated and the solution ˆ nw  of the loss function 

is found. Since it is assumed that the estimated WN is a good approximation of the 

unknown underlying function, the vector ˆ nw  is expected to be very close to the true 

vector 0w  that minimizes the loss function. Hence, the noise variance can be 

approximated by a second WN,  ˆ; nf x u , where the squared residuals of the initial 

WN are used as target values, (Satchwell, 1994). In the second WN,  ˆ; nf x u , v  is 

the number of HUs and ˆ nu  is the estimated vector of parameters that minimizes the loss 

function of the second WN. Since it is assumed that the estimated WN is a good 

approximation of the unknown underlying function, the vector ˆ nu  is expected to be 

very close to the true vector 0u  that minimizes the loss function. Hence the following 

cost function is minimized in the second network: 
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  x w x u                                                                         (38) 

 

and for a new set of observations, *
x  that were not used in the training: 

 

 2 * *

0
ˆ ( ) ;  .f  x x u                                                                                                (39) 

 

This technique assumes that the residuals errors are caused by variance alone, 

(Carney, et al., 1999). In order to estimate the noise variance, data that were not used 

in the training of the bootstrapped sample should be used. One way to do this is to 

divide the dataset in training and a validation set. However, leaving out these test 
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patterns is a waste of data, (Heskes, 1997). Alternatively an unbiased estimation of the 

output of the WN, ˆ ( )uby x , can be approximated by: 

 

ˆ ˆ( ) ( )
B B

m m

ub i i i

i i i i

y q y q
 

 x x                                                                                     (40) 

 

where m

iq  is 0 if pattern m appears on the 
thi  bootstrap sample and 1 otherwise. 

Constructing the new network  ;f x u  we face the problem of model selection again. 

Using the methodology described in the previous section, the correct number of v  HUs 

is selected. Usually 1 or 2 HUs are enough to model the residuals. Finding the estimator 

of the noise variance the prediction intervals can be constructed: 

 

2 2

* * * * *
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where 
2

at  can be found in a Student’s t distribution table and 1 a  is the desired 

confidence level. If the balancing method is used then the prediction intervals are given 

by: 

 

2 2

* * * * *

, ,
ˆ ˆ( ) ( ) ( ) ( ) ( )a aavg p avg pg z f g z     x x x x x

                                               (42)
 

 

where 
2

az  can be found in a standard Gaussian distribution table and 1 a  is the desired 

confidence level. 

 

5.3.Evaluating the confidence and prediction intervals 
 

In this section the bagging and balancing methods are evaluated in constructing 

confidence and prediction intervals. The two methods will be tested in the two function 

( )f x  and ( )g x  given by (13) and (15) respectively. 

In Fig. 7 the confidence intervals are presented for the first function. The first part 

of the Fig. 7 presents the confidence intervals using the bagging method while the 

second part presents the confidence intervals using the balancing method. Similarly, 

Fig. 8 presents the confidence intervals for the second function where the first part 

refers to the bagging method while the second part refers to the balancing method. It is 

clear that the confidence intervals using the balancing method are significantly 

narrower. This is due to the biased model variance estimator of the bagging method 

which results in overestimation of the confidence intervals, (Carney, et al., 1999). 

The 95% prediction intervals of the first function, ( )f x , are presented in Fig. 9. 

Again, the first part refers to the bagging method while the second part refers to the 

balancing. It is clear that both methods were able to capture the change in the variance 

of the noise. In both cases a WN with 2 HUs were used to approximate function ( )f x  

and a WN with 1 HUs to approximate the residuals in order to estimate the noise 

variance. In order to compare the two methods the Prediction Interval Correct 

Percentage (PICP) is used. PICP is the percentage of data points contained in the 

prediction intervals. Since the 95% prediction intervals were estimated, a value of PICP 

close to 95 is expected. The bagging prediction intervals contain 98% of the data points 
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(PICP) while in the case of the balancing method the PICP=95% and equal to the 

nominal value of 95%. 

Next, the same analysis is repeated for the second function, ( )g x . The 95% 

prediction intervals of ( )g x  are presented in Fig. 10. The first part refers to the bagging 

method while the second part refers to the balancing. In both cases a WN with 8 HUs 

were used to approximate function ( )g x  and a WN with 2 HUs to approximate the 

residuals in order to estimate the noise variance. As in the previous case the two 

methods are compared using the PICP. For the bagging method the PICP=98.33% while 

for the balancing method PICP=97.33%. 

It is clear that the balancing method produce an improved estimator of the model 

variance. Our results are consistent with those of (Breiman, 1996; Carney, et al., 1999; 

Heskes, 1997; Papadopoulos, et al., 2000; A. D. Zapranis & Livanis, 2005; Ζαπράνης, 

2005). In all cases the intervals produced by the balancing method were significantly 

smaller while the PICP were considerable improved and closer to its nominal value. 

 

6. Case Study: Modeling The Daily Average Temperature In Berlin 

 

In this section a real dataset is used to demonstrate the application of our proposed 

framework. More precisely using data from detrended and deseasonalized daily average 

temperatures (DATs) a WN will be constructed, initialized and trained. Also, at the 

same time the significant variables will be selected, in this case the correct number of 

lags. Finally, the trained WN will be used to construct confidence and prediction 

intervals. 

The dataset consists of 3650 values, corresponding to the detrended and 

deseasonalized DATs of 10 years (1991-2000) in Berlin. In order for each year to have 

equal observations the 29th of February was removed from the data.  

Using WNs the generalized version of detrended and deseasonalized is estimated 

nonlinearly and non-parametrically, that is: 

 

 ( 1) ( ), ( 1),... ( ) .T t T t T t e t                                                                              (43) 

where  T  is the detrended and deseasonalized DAT and ( )e t are the residuals of the 

WN. 

For a concise treatment on modeling the temperature process refer to (A. Zapranis & 

Alexandridis, 2008) and (A. Zapranis & Alexandridis, 2009). In the above expression, 

the length of the lag series must be selected. 

 

6.1.Variable Selection 
 

The target values of the WN are the DATs. The explanatory variables are lagged 

versions of the target variable. Choosing the length of a lag distribution in linear models 

can be done by minimizing an information criterion like Akaike or Schwarz criteria. 

Alternatively the ACF and the PACF can be studied. The ACF suggests that the first 

35 lags are significant. On the other hand the PACF suggests that the 6 first lags as well 

as the 8th and the 11th lag must be included on the model. However results from these 

methods are not necessarily true in nonlinear nonparametric models.  

Alternatively, in order to select only the significant lags the variable selection 

algorithm presented in the previous section will be applied. Initially, the training set 
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contains the dependent variable and 7 lags. Hence, the training set consists of 7 inputs, 

1 output and 3643 training pairs. 

In this study the relevance of a variable to the model is quantified by the SBP criterion 

which was introduced in the previous section 

Table 5 summarizes the results of the model identification algorithm for Berlin. Both 

the model selection and the variable selection algorithms are included in Table 5. The 

algorithm concluded in 4 steps and the final model contains only 3 variables. The 

prediction risk for the reduced model is 3.1914 while for the original model was 3.2004. 

On the other hand the empirical loss slightly increased from 1.5928 for the initial model 

to 1.5969 for the reduced model indicating that the explained variability (unadjusted) 

slightly decreased. However, the explained variability (adjusted for degrees of freedom) 

was increased for the reduced model to 64.61% while it was 63.98 initially. Finally, the 

number of parameters is significantly reduced in the final model. The initial model 

needed 5 HUs and 7 inputs. Hence, 83 parameters were adjusted during the training 

phase. Hence the ratio of the number of training pairs n  to the number of parameters 

p  was 43.9. In the final model only 1 HU and 3 inputs were used. Hence only 11 

parameters were adjusted during the training phase and the ratio of the number of 

training pairs n  to the number of parameters p  was 331.2. 

In Table 6 the statistics for the WN model at each step can be found. More precisely, 

the first part of Table 6 reports the value of the SBP and its p-value. In the second part 

of Table 6 various fitting criteria are reported. More precisely the Mean Absolute Error, 

the Maximum Absolute Error (Max AE), the Normalized Mean Square Error (NMSE), 

the Mean Absolute Percentage Error (MAPE), the 2R , the empirical loss and the 

prediction risk. 

In the full model, it is clear that the value of the SBP for the last three variables is 

very small in contrast to the first two variables. Observing the p-values, we conclude 

that the last four variables have p-value greater than 0.1 while the 6th lag has a p-value 

of 0.8826 strongly indicating a “not significant” variable. The WN was converged after 

43 iterations. In general a very good fit was obtained. The empirical loss is 1.5928 and 

the prediction risk is 3.2004. The Max AE is 11.1823 while the MAE is 1.8080 and the 

NMSE is 0.3521. The MAPE is 3.7336. Finally the 
2 63.98%R  .  

The statistics for the WN at step 1 are also presented in Table 6. The network had 6 

inputs, 2 wavelets were used to construct the WN and 33 weights adjusted during the 

training phase. The WN converged after 17 iterations. By removing 6X  from the model, 

we observe from Table 6 that the p-value of 5X  became 0 while for 7X  and 4X  the p-

values became 0.5700 and 0.1403 respectively. The empirical loss was slightly 

decreased to 1.5922. However the MAE and NMSE were slightly increased to 1.8085 

and 0.3529 respectively. On the other hand the Max AE and the MAPE were decreased 

to 11.1446 and 3.7127 respectively. Next the decision of removing 6X  is tested. The 

new prediction risk was reduced to 3.1812 while the explained variability adjusted for 

degrees of freedom increased to 64.40%. Hence, the removal of 6X  reduced the 

complexity of the model while its predictive power was increased. 

At step 2, 7X , which had the largest p-value=0.5700 at the previous step, was 

removed from the model. Table 6 shows the statistics for the WN at step 2. The new 

WN had 5 inputs, 1 HU was used and 17 weights adjusted during the training phase. 

The WN converged after 19 iterations. A closer inspection of  Table 6 reveals that the 

removal of 7X  resulted to an increase in the error measures and a worse fit were 
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obtained. The new 2R  is 64.59%. The new prediction risk increased to 3.1902 which 

is smaller than the threshold. In other words, by removing 7X  the total predictive power 

of our model was slightly decreased; however, adding the variable 7X  on the model 

only 0.28% additional variability of our model was explained while the computational 

burden was significantly increased. 

Examining the values of the SBP on Table 6 it is observed that the first two variables 

still have significantly larger values than the remaining variables. The p-values reveal 

that at in the third step the 5X  must be removed from the model since its p-value is 

0.1907. 

At step 3 the network had 4 inputs, 1 HU was used and 14 weights adjusted during 

the training phase. The WN converged after 4 iterations. When removing 5X  from the 

model we observe from Table 6 that only 4X  has a p-value greater than 0.1. Again the 

empirical loss and the prediction risk were increased. More precisely the empirical loss 

is 1.6004 and the prediction risk increased 0.48% to 3.2056. The new prediction risk is 

greater than the estimated prediction risk of the initial model about 0.16%. Again the 

increase in the prediction risk was significantly smaller than the threshold. On the other 

hand, the 2R  was increased to 64.61% indicating an improved fit. Hence, the decision 

of removing 5X  was accepted. 

In the final step the variable 4X  had p-value=0.4701 and it was removed from the 

model. The network had 3 inputs, 1 wavelet was used for the construction of the WN 

and only 11 weights adjusted during the training phase. The WN converged after 19 

iterations. After the removal of 4X  a new WN was trained with only one wavelet. The 

new empirical loss was decreased to 1.5969. The MAE and NMSE are 1.8095 and 

0.3530 respectively while the Max AE and the MAPE are 11.0925 and 3.7171 

respectively. Next the decision of removing 4X  was tested. The new prediction risk 

was reduced to 3.1914 while the explained variability adjusted for degrees of freedom 

was 64.61%. Hence, the removal of 4X  reduced the complexity of the model while its 

performance was increased. The p-values of the remaining variables are zero indicating 

that the remaining variables are characterized as very significant variables. Hence, the 

algorithm stops. Our proposed algorithm indicates that only the 3 most recent lags 

should be used while PACF suggested the first 6 lags as well as the 8th and the 11th lag. 

Concluding, in the final model only three of the seven variables were used. The 

complexity of the model was significantly reduced since from 83 parameters in the 

initial model only 11 parameters have to be trained in the final model. In addition, in 

the reduced model the prediction risk minimized when only one HU was used while 5 

HUs were needed initially. Our results indicate that the in-sample fit was slightly 

decreased in the reduced model. However when an adjustment for the degrees of 

freedom is made we observe that the 2R  was increased to 64.61% from 63.98% in the 

initial model. Finally, the prediction power of the final and less complex proposed 

model was improved since the prediction risk was reduced to 3.1914 from 3.2004. 

 

6.2.Model Selection 
 

In each step the appropriate number of HUs is determined by applying the model 

selection algorithm presented in section 3. Table 7 shows the prediction risk for the first 

5 HUs at each step of the variable selection algorithm for Berlin. Ideally, the prediction 
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risk will decrease (almost) monotonically until a minimum is reached and then it will 

start to increase (almost) monotonically. The number of HUs that minimizes the 

prediction risk is selected for the construction of the model.  

In the initial model, where all seven inputs were used, the prediction risk with one 

HU is only 3.2009. When one additional HU is added to the model the prediction risk 

increases. Then, as more HUs are added to the model the prediction risk monotonically 

decreases. The minimum is reached when 5 HUs are used and is 3.2004. When 

additional HUs are added in the topology of the model the prediction risk increases. 

Hence, the architecture of the WN contains 5 HUs. In other words, the 5 higher ranking 

wavelets should be selected form the wavelet basis in order to construct the WN. 

Observing Table 7 it is clear that the prediction risk at the initial model with only one 

HU is almost the same as in the model with 5 HUs. This due to the small number of 

parameters that were adjusted during the training phase when only 1 HU is used and 

not due to a better fit. 

At the second step, when variable 6X  was removed, the prediction risk is minimized 

when 2 HUs are used. Similarly, at steps two, three and four the prediction risk is 

minimized when only one HU is used. Additional HUs does not improve the fitting or 

the predictive power of the model. 

 

6.3.Initialization and training 
 

After the training set and the correct topology of the WN are selected, the WN can 

be constructed and trained. The BE method is used to initialize the WN. A wavelet basis 

is constructed by scanning the 4 first levels of the wavelet decomposition of the DAT 

in Berlin. 

The wavelet basis consists of 168 wavelets. However, not all wavelets in the wavelet 

basis contribute to the approximation of the original time-series. Following (Q. Zhang, 

1997) the wavelets that contain less than 5 sample points of the training data in their 

support are removed. 76 wavelets that do not significantly contributed to the 

approximation of the original time-series were indentified. The truncated basis contains 

92 wavelet candidates. Applying the BE method the wavelet are ranked in order of 

significance. The wavelets in the wavelet library are ranked as follows: the BE starts 

the regression by selecting all the available wavelets from the wavelet library. Then the 

wavelet that contributes the least in the fitting of the training data is repeatedly 

eliminated. Since only one HU is used on the architecture of the model, only the wavelet 

with the highest ranking is used to initialize the WN. Part (a) of Fig. 11 presents the 

initialization of the final model using only 1 HU. The initialization is very good and the 

WN converged after only 19 iterations. The training stopped when the minimum 

velocity, 
510
, of the training algorithm was reached. The fitting of the trained WN can 

be found in part (b) of Fig. 11.  

Next, various fitness criteria of the WN corresponding to the DAT in Berlin are 

estimated. Our results reveal that the WNs fit the DATs reasonable well. The overall fit 

for Berlin is 
2 64.61%R   while the MSE is 5.4196 and the MAE is only 1.8090. 

Next the Prediction of Sign (POS) as well the Prediction of Change in Direction 

(POCID) and the Independent Prediction of Change in Direction (IPOCID) are also 

estimated. These three criteria examine the ability of the network to predict changes, 

independently of the size of the change and they are referred as percentages. The POS 

measures the ability of the network to predict the sign of the target values, positive or 

negative. For analytical expressions of these criteria we refer to  (A. Zapranis & 
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Refenes, 1999). The POS for the detrended and deseasonalized DATs is very high and 

it is 81.49%. The POCID is 60.15% while the IPOCID is 52.30%. 

 

6.4 Confidence and prediction intervals 

 

After the WN is constructed and trained it can be used for prediction. Hence, 

confidence and prediction intervals can be constructed. In this section both confidence 

and prediction intervals will be constructing using the balancing method. Using the BS 

method 200 training sample will be created and then they will be divided in 8 groups. 

In each group the average output of the WNs will be estimated. Next new 1000 

bootstrapped samples will be created for the 8 average outputs in order to estimate the 

model variance given by (35). Then the confidence intervals are estimated with level of 

significance 5%a  . 

Fig. 12 presents the confidence intervals for the detrended and deseasonalized DAT 

in Berlin as well as the average WN output obtained from 200 bootstrapped samples. 

Because the intervals are very narrow in order to obtain a clear figure only the 5 first 

values are presented. Next, the prediction intervals are constructed for the out-of-

sample dataset. The out-of-sample data consists of 365 values of detrended and 

deseasonalized DATs in Berlin for the period 2000-2001. In Table 8 the out-of-sample 

performance criteria are presented. The overall fit adjusted for degrees of freedom is 
2 59.27%R  . The NMSE is 0.3961 while the MAPE is only 2.4108. In Fig. 13 the 

prediction intervals together with the real data and the average forecast of the WN for 

the 200 bootstrapped samples. The PICP=93.46%. 

 

7. Case Study 2: Modeling The Daily Average Wind Speed in New York 

 

In this section the proposed framework is applied on a second real dataset. More 

precisely daily average wind speeds (DAWS) are modeled and forecasted using a WN. 

The data were collected from NOAA and correspond to DAWS collected from New 

York, USA. The wind speeds are measured in 0.1 knots while the measurement period 

is between 1st of January 1988 and 28th of February 2008. The first 20 years are used 

for the estimation of the parameters while the remaining two months are used for the 

evaluation of the performance of the proposed model. In order for each year to have the 

same number of observations the 29th of February is removed from the data resulting to 

7,359 data points. The dataset is complete without any missing values. 

Our aim is to select the correct number of lags that describe the dynamics of the 

detrended and deseasonalized DAWSs and then build a WN that can accurately 

forecasts the DAWSs. For a concise treatment on modeling the speed process refer to 

(Alexandridis & Zapranis, 2011). The predictive power of the proposed model is 

evaluated in the periods of January and February. These periods exhibits the highest 

variability and it is much harder to accurately predict the wind speed, (Alexandridis & 

Zapranis, 2011) 

 

7.1. Variable selection 
 

The first step is to identify the length of the lag series. The targets of the WN are 

the detrended and deseasonalized DAWSs while the explanatory variables are lagged 

versions of the target variable. Initially the training set contains the depended variable 
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and 7 lags. Hence, the training set consists of 7 inputs and 7,293 training pairs. Again 

the relevance of each variable to the model is quantified by the SBP criterion. 

Table 9 summarizes the results of the model identification algorithm in New York. 

Both the model selection and the variable selection algorithms are included in Table 9. 

The algorithm concluded after 4 steps and the final model contains only 3 variables. 

The prediction risk for the reduced model is 0.0937 while for the original model was 

0.0938 indicating that the predictive power of the WN was slightly increased. On the 

other hand the empirical loss slightly increased from 0.0467 for the initial model to 

0.0468 for the reduced model indicating that the explained variability (unadjusted) 

slightly decreased. Finally, the complexity of the network structure and the number of 

parameters were reduced in the final model. The initial model needed 1 HU and 7 

inputs. Hence, 23 parameters were adjusted during the training phase and the ratio of 

the number of training pairs to the number of parameters was 317.4. In the final model 

only 2 HU and 3 inputs were used. Hence, only 18 parameters were adjusted increasing 

the ratio of the number of training pairs to the number of parameters to 405.6. 

In Table 10 the statistics for the WN at each step can be found. More precisely, the 

first part of Table 10 reports the values of the SBP and its p-value. In the second part 

various fitting criteria are reported. A closer inspection of Table 10 revels that the 

various error measures are reduced in the final model. However, the values of 2R  are 

relative small in all cases. This is due to the presence of large noise values compared to 

the small values of the underlying function. 

Concluding, in the final model only three of the seven variables were used. The 

complexity of the model was reduced while at the same the prediction power of the 

reduced model was increased. However, a slightly worse fit in-sample was obtained. 

 

7.2. Model selection 

 

In this section the appropriate number of HUs is determined by applying the model 

selection algorithm. Table 11 shows the prediction risk for the first 5 HUs at each step 

of the variable selection algorithm for the DAWSs in New York. It is clear that only 1 

HU is sufficient to model the detrended and deseasonalized DAWS in New York at the 

first three steps. Similarly, 2 HU are need for the last two steps. 

 

7.3. Initialization and training 

 

After the training set and the correct topology of the WN are selected, the WN can 

be constructed and trained. In this case study the BE method is used to initialize the 

WN. A wavelet basis is constructed by scanning the 4 first level of the wavelet 

decomposition of the detrended and deseasonalized DAWSs in New York. 

The wavelet basis consists of 205 wavelets. In order to reduce the number of the 

wavelets in the wavelet basis, the wavelets that contain less than 6 sample points of the 

training data in their support are removed. The truncated basis contains 119 wavelet 

candidates. Applying the BE method the wavelets are ranked in order of significance. 

Since, only 2 HUs are used in the architecture of the model, the best two wavelets are 

selected. Part (a) of  Fig. 14 presented the initialization of the final model using 2 HUs. 

The initialization is very good and the WN converged after 225 iterations. The training 

stopped when the minimum velocity, 
510
, of the training algorithm was reached. The 

fitting of the trained WN can be found in part (b) of Fig. 14. 



Preprint – Published in Neural Networks, 42, pp. 1-27, 2013 

 

7.4. Prediction 

 

In this section the proposed model will be evaluated out-of-sample. More precisely, 

the trained WN will be used in order to predict the future evolution of the dynamics of 

the wind speed process.  

The out-of-sample data corresponds to the period of 1st of January 2008 to 28th of 

February 2008 and were not used for the training of the WN. Note, that previous 

analysis indicates that the variance is higher in the winter period indicating that it is 

more difficult to forecast accurately DAWS for these two moths. The objective here is 

to estimate the cumulative wind speed index for the two periods. As a comparison the 

Historical Burn Analysis (HBA) method will be used. The HBA is a statistical method 

that estimates the performance of the index over the specific period the previous years. 

In other words, is the average of 20 years of the index of the period of January and 

February and it will be used as a benchmark. In (Alexandridis & Zapranis, 2011) the 

proposed framework is compared against various methods. The aim here is to show the 

accuracy of the proposed framework rather than an extensive comparison against 

various models. 

In Table 12 the performance of the WN and the HBA are presented. In addition the 

actual values of the cumulative wind speed index for the two periods are presented in 

the final row. A closer inspection of Table 12 reveals that the WN can accurately predict 

the future evolution of the wind speed process.  

First, the cumulative wind speed index is estimated for the period of January. The 

HBA is 345.5 while the actual index is 311.2. The prediction of the WN is 312.7 and it 

is very close to the real value of the index. Second, the index is estimated for the whole 

period between January and February. The HBA suggests that the index is 658.3 while 

the actual index is 600.6. The forecasted index using the WN is 591.1 which is again 

very close to real value. 

Our results indicate that WNs constitute an accurate and efficient tool for modeling 

the dynamics of the wind process in New York. 

 

 

8. Case Study 3: Breast Cancer Classification in Wisconsin 

 

In this section a different problem is considered. A WN will be constructed in order 

to classify breast cancer based on various attributes. The data set were obtained by the 

UCI Machine Learning Repository and provided by (Mangasarian & Wolberg, 1990). 

The Wisconsin breast cancer (WBC) data contains 699 samples. However, there are 

16 missing values that are omitted, reducing the sample to 683 values. Each instance 

has one of two possible classes: benign or malignant. There are 239 (35%) malignant 

cases and 444 (65%) benign cases. The aim is to construct a WN that accurately classify 

each clinical case. The classification is based on 9 attributes: clump thickness, 

uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial 

cell size, bare nuclei, bland chromatin, normal nucleoli and mitoses.   

 

8.1.Variable selection 
 

The target values of the WN are the two possible classes. The explanatory variables 

are the 9 attributes described in the previous section. In order to construct an accurate 

WN classifier the contribution of each attribute to the predictive power of the classifier 
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must be tested. First, the significance of each attribute is examined. Hence, the initial 

training set consists of 9 inputs, 1 output and 683 training samples. Again, the relevance 

of each attribute is quantified by the SBP criterion. Applying the proposed variable 

selection the final model has only 6 variables while the predictive power of the model 

remains almost unchanged. 

Table 13 summarizes the results of the model identification algorithm for the WBC 

data. Both the model selection and variable selection algorithm are included in Table 

13. The algorithm concluded in 3 steps and the final model consists of 6 variables only. 

A closer inspection of Table 13 reveals that the empirical loss decreased from 0.0713 

in the full model to 0.0426 to the reduced and simpler model. In addition, the prediction 

risk is also decreased from 0.1488 to 0.1135 indicating that the reduced model provides 

a better fitting to the data but also has a better forecasting ability. The results of the 

variable significance algorithm indicate that the uniformity of cell shape, marginal 

adhesion and mitoses should be removed from the input of the training sample in breast 

tumor classification. 

 

8.2. Model selection 

 

In Table 13 the results of the model selection algorithm are presented. In the full 

model a WN with 1 HU was constructed. Applying the model selection algorithm using 

50 bootstrapped sample of the initial training set, the prediction risk was minimized 

when only 1 HU was used. The prediction risk for the full model was 0.1488 while the 

empirical loss was 0.0713. Similarly, in the final step, the reduced model needed 3 HU. 

The prediction risk was 0.1135 while the empirical loss was 0.0426 indicating that the 

reduced model provides a better fitting to the data but also has a better forecasting 

ability 
 

8.3. Initialization and training 

 

After the training set and the correct topology of the WN are selected, the WN can 

be constructed and trained. The BE method is used to initialize the WN. A wavelet basis 

is constructed by scanning the 4 first levels of the wavelet decomposition of the data 

set. 

The initial wavelet basis consists of 675 wavelets. However, not all wavelets in the 

wavelet basis contribute to the approximation of the original time-series. The wavelets 

that contain less than 8 sample points of the training data in their support are removed. 

The truncated basis contains 28 wavelet candidates. The MSE after the initialization 

was 0.173170 and the initialization needed 0.23 seconds to finish. The initialization is 

very good and the WN converged after only 264 iterations. The training stopped when 

the minimum velocity, 
510
, of the training algorithm was reached. The MSE error after 

the training is 0.145352 and the total amount of time needed to train the network 

(initialization and training) was 1.53 seconds. 

 

8.4. Classification power of the full and the reduced model 
 

In this section the predictive and classification power of the WN will be evaluated. 

More precisely, first the full model, including all 9 attributes will be tested using the 
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leave-one-out cross validation. Then, a comparison will be made against the reduced 

model that uses only 6 attributes. 

 The full model is first trained using all training examples. The predictive power of 

the in-sample classifying power is presented in Table 14. The WN accuracy in sample 

is 97.65%. Also, the WN classified wrong the malignant tumors only 3 times. Next, the 

predictive power of the WN is evaluated out-of-sample using the leave-one-out cross-

validation method. Each time a validation sample is created that consists of only one 

observation while the remaining pairs  , yx are used for the training of a WN. In the 

next step another validation sample is created and a new WN is trained. The procedure 

is repeated until the WN classifies all pairs   , yx . The accuracy of the full model out-

of-sample is 97.51% while the misclassification of the malignant cases is 4. 

Next, the predictive power of the reduced model is evaluated in-sample and out-of-

sample. In-sample the accuracy of the WN is 97.51% and 4 malignant cases were 

misclassified. Similarly, the accuracy of the WN out-of-sample is 97.36% with 5 

misclassified malignant cases. A closer inspection of Table 14 reveals that the full 

model outperforms the reduced model only by one correct classification. 

It is clear that the accuracy of the network remain practically the same although 3 

classifiers were removed from the data. Hence, we can conclude that the information 

that comes from the uniformity of cell shape, marginal adhesion and mitoses does not 

contribute significantly in classifying breast tumors since the additionally accuracy is 

only 0.15%. 

Our results indicate that a WN can successfully be used in breast cancer 

classification providing high classification accuracy. Moreover, the accuracy of the WN 

is higher than the ones presented in relevant studies, (Duch & Adamczak, 1998; 

Hassanien & Ali, 2006; Senapati, Mohanty, Dash, & Dash, 2011; Setiono & Liu, 1997; 

Wei & Billings, 2007). 
 

9. Case Study 4: The Mackey-Glass equation 
 

In this section the proposed framework will be evaluated in a chaotic time series. 

Data from Mackey-Glass series were generated, (Mackey & Glass, 1977). The Mackey-

Glass equation is a time-delay differential equation given by: 
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The behaviour of the Mackey-Glass equation depends on the choice of the time-

delay  . The common value that it is used is 17   and this will also be the case in 

this case study, (Hsu & Tenorio, 1992; Yingwei, Sundararajan, & Saratchandran, 

1997). The Mackey-Glass equation with 17   has a chaotic behaviour and an attractor 

with fractal dimension 2.1 . The usual function approximation approaches are 

disadvantageous when the fractal dimension is greater than 2, (Cao, et al., 1995; 

Iyengar, et al., 2002). In addition the usual values of the parameters are 0.2a  , 0.1b   

and 10c  . The series initialized at 0 0.1x  . In order for the initialization transients to 

decay the first 4000 data points were discarded, (Platt, 1991; Yingwei, et al., 1997). 

The series is predicted with 50v   sample steps ahead using four past samples: 

6 12 18,  ,  ,  n n n nx x x x          .  
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9.1.Model Selection 
 

In this section the appropriate number of HUs is determined by applying the model 

selection algorithm presented in section 3. In Fig. 15 the prediction risk and the 

empirical loss for the Mackey-Glass equation is presented. The prediction risk was 

estimated for the 35 first. It is clear that the empirical loss is decreases (almost) 

monotonically as the complexity of the network increases. On the other hand the 

prediction risk decreases (almost) monotonically until a minimum is reached and then 

it will start to increase (almost) monotonically. The minimum value of the prediction 

risk is 0.002185 and is obtained when a WN with 21 HUs is used. Hence, 21 HUs were 

selected for the construction of the model. 

 

9.2. Initialization and training 

 

After the training set and the correct topology of the WN are selected, the WN can 

be constructed and trained. The BE method is used to initialize the WN. A wavelet basis 

is constructed by scanning the 4 first levels of the wavelet decomposition of the data 

set. 

The initial wavelet basis consists of 254 wavelets. However, not all wavelets in the 

wavelet basis contribute to the approximation of the original time-series. The wavelets 

that contain less than 6 sample points of the training data in their support are removed. 

The truncated basis contains 116 wavelet candidates. The MSE after the initialization 

was 0.220581 and the initialization needed 0.45 seconds to finish. The initialization is 

very good and the WN converged after only 1901 iterations. The training stopped when 

the minimum velocity, 
410
, of the training algorithm was reached. In this case, the 

minimum velocity was slightly increased, from 
510
 to 

410
, in order to avoid very 

large training times. The MSE error after the training is 0.000299 and the total amount 

of time needed to train the network (initialization and training) was 39.2 seconds. The 
2 99.30%R   while the 89.60%POCID   and 91.23%IPOCID  . The initialization 

of the WN and the final approximation after the training phase are presented in Fig. 16. 
 

9.3. Predicting the evolution of the chaotic Mackey-Glass time-series 

 

In this section the performance of the WN out-of-sample is evaluated. The training 

data set was consisting of 983 pairs while the out-of-sample dataset consists of 950 

pairs. These additional data were not used for the training of the WN. The ability of the 

WN to forecast the evolution of the chaotic Mackey-Glass equation is presented in Fig. 

17. 

The WN has a very good generalization and forecasting ability. The MSE in the out-

of-sample data set is only 0.000347. Similarly, the 
2 99.14%R   while the 

87.36%POCID   and the 90.41%IPOCID   indicating that the WN can predict with 

great accuracy the changes in the direction of the chaotic system. 

 

9.4. Confidence and prediction intervals 
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After the WN is constructed and trained it can be used for prediction. Hence, 

confidence and prediction intervals can be constructed. In this section both confidence 

and prediction intervals will be constructing using the balancing method. Using the BS 

method 200 training sample will be created and then they will be divided in 8 groups. 

In each group the average output of the WNs will be estimated. Next new 1000 

bootstrapped samples will be created for the 8 average outputs in order to estimate the 

model variance given by (35). Then the confidence intervals are estimated with level of 

significance 5%a  . Unlike, the previous case studies and examples, in this case there 

is no additional noise to the underlying function. Moreover, the network fitting and 

prediction are very good, as it was mentioned in the previous section, with 
2 99.30%R   in sample and 

2 99.14%R   out-of-sample. As a result, it is expected that 

the variance 2 2 2  p m      to be very small. 

Part (a) of Fig. 18 presents the confidence intervals and the true underlying function 

which is the Mackey-Glass equation. Since, the confidence intervals are very narrow, 

for clarity reasons, only a selected part is shown in Fig. 18. It s clear that the underlying 

function is always between the confidence intervals. 

In addition, in part (b) Fig. 18 the prediction intervals for the out-of-sample data set 

together with the read data and the average forecast of the WN for the 200 bootstrapped 

samples are presented. The PICP=98.8%. 

 

 

10. Conclusions 

 

In this study a complete statistical framework for constructing and using WNs in 

various applications was presented. Although a vast literature about WNs exists, to our 

knowledge this is the first study that presents a step by step guide for model 

identification for WNs. More precisely, the following subjects were examined: the 

structure of a WN, training methods, initialization algorithms, model selection methods, 

variable significance and variable selection methods and finally methods to construct 

confidence and prediction intervals. Finally the partial derivatives with respect to the 

weights of the network, to the dilation and translation parameters as well as the 

derivative with respect to each input variable are presented. 

Our proposed framework was tested in two simulated cases, in three real dataset 

consisting of daily temperatures in Berlin, daily wind speeds in New York, Wisconsin 

breast cancer classifications and in predicting one chaotic time-series, the Mackey-

Glass equation. Our results have shown that the proposed algorithms produce stable 

and robust results indicating that our proposed framework can be applied in various 

applications.  

A multidimensional WN with a linear connection of the wavelons to the output and 

direct connections from the input layer to the output layer is proposed. The training is 

performed by the classic back-propagation algorithm.  

One of the advantages of WNs is the allowance of constructive algorithms for the 

initialization of the WN. Four initialization methods were tested. The heuristic, the 

RSO, the SSO and the BE method. Our results indicate that SSO and BE perform 

similarly and outperform the other two methods whereas BE outperforms SSO in 

complex problems. Using the BE and SSO the training times were reduced significantly 

while the network converged to the global minimum of the loss function. The BE is 

more efficient than the SSO algorithm however it is more computationally expensive. 

On the other hand in the BE algorithm the calculation of the inverse of the wavelet 
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matrix is needed which columns might be linear dependent. In that case the SSO must 

be used. However since the wavelets come from a wavelet frame this is very rare to 

happen. It is clear that additional computational burden is added in order to initialize 

efficiently the WN. However the efficient initialization significantly reduces the 

training phase hence the total amount of computations is significant smaller than a 

network with random initialization. 

Model selection is a very important step. A network with less HUs than needed is 

not able to learn the underlying function while selecting more HUs than needed the 

network will be over-fitted, i.e. the network will start to learn the noise. Four techniques 

were applied to estimate the prediction risk, the FPE, the GCV, and two sampling 

techniques the BS and the CV. Our results indicate that the sampling techniques give 

more stable results than other alternatives. BS and CV found the correct network 

topology in both cases. Although FPE and GCV are extensively used in finding the 

topology of a WN, due to the linear relation of the wavelets and the original signal, our 

results indicate that both criteria should not be used in complex problems. Moreover 

our results indicate that early stopping techniques in complex problems tend to propose 

more complex problems than needed. 

In order to indentify the significance of each explanatory variable 9 criteria were 

presented. These are the weights of the direct connections between the input and the 

output variable, 8 sensitivity criteria and one model fitness criterion. In order to 

statistically test whether a variable is insignificant and can be removed for the training 

dataset or not the distributions of these criteria were estimated. Our results indicate that 

only SBP correctly indentifies the insignificant variable and produce correct and robust 

results in all cases. On the other hand using the AvgDM or the AvgLM the resulting p-

values are inconclusive and very volatile on the bootstrapped samples. After each 

variable is removed it is very important to test the correctness of this decision. This can 

be done by checking the prediction risk or the 2R  of the reduced model. In all cases, 

when the irrelevant variable was removed the prediction risk decreased while the 2R  

increased. 

Next, a framework for constructing confidence and prediction intervals was 

presented. Two methods originating from the sigmoid NNs were adapted, the bagging 

and the balancing method. Our results indicate that the bagging method overestimates 

the model variance and as a result wider intervals are constructed. On the other hand 

the balancing method produces an unbiased estimator of the model variance. Our results 

are consistent with previous studies. 

Although a framework for selecting an appropriate model was presented the 

adequacy of the final model must be further tested. This is usually done by examining 

the residuals by various criteria. However, the selection of these criteria depends on the 

nature of the underlying function and the assumptions made while building the model. 

In order to ensure the stability and robustness of the proposed algorithms online 

training or synthesis of the WN was avoided. The adaption of the proposed methods to 

switching models and adaptive networks is left as a future research. 
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A. Partial derivatives w.r.t. the bias term 
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B. Partial derivatives w.r.t. the direct connections 

[0]

ˆ
1,...,

p

i

i

y
x i m

w


 


 

C. Partial derivatives w.r.t. the linear connections between the wavelets and the 
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D.  Partial derivatives w.r.t. the translation parameters 
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E. Partial derivatives w.r.t. the dilation parameters 
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F. Partial derivatives w.r.t. the input variables 
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Fig. 1. A feedforward wavelet neural network 

 

 
Fig. 2. Four different initialization methods of the first case 
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Fig. 3. Four initialization methods for the second case 

 
 

 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 

Fig. 4. Training a wavelet network with 1 (part a), 2 (part b) and 3 (part c) hidden units. In part (d) the target function is presented 
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(a)                                                                                (b) 

 
(a)                                                                                (b) 

Fig. 5. Training a wavelet network with 7 (part a), 8 (part b) and 14 (part c) hidden units. In part (d) the target function is presented 
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Fig. 6. Model Identification. Model Selection and Variable Selection algorithms. 
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(a)                                                               (b) 

Fig. 7. Confidence intervals for the first case using the bagging (a) and balancing (b) method 

 
 

 
(a)                                                               (b) 

Fig. 8. Confidence intervals for the second case using the bagging (a) and balancing (b) method 

 

 
(a)                                                                (b) 

Fig. 9. Prediction intervals for the first case using the (a) bagging (PICP=98%) and (b) balancing (PICP=95%) method 
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(a)                                                               (b) 

Fig. 10. Prediction intervals for the second case using the (a) bagging (PICP=98.33%) and (b) balancing  (PICP=97.33%) method 

 

 
(a)                                                             (b) 

Fig. 11.  Initialization of the final model for the temperature data in Berlin using the BE method (a) and the fit of the trained 
network with 1 HU (b). The WN converged after 19 iterations 

 

 
Fig. 12. Confidence intervals and the average WN output using the balancing method and 200 bootstrapped samples. The figure 

presents only the 5 first values for simplicity. 
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Fig. 13. Prediction intervals, the real data (dotted) and the average WN output (solid line) using the balancing method and 200 

bootstrapped samples of the detrended and deseasonalized DATs in Berlin for the period 2000-2001. The PICP=93.42%. 

 

 
    (a)                                                                             (b) 
Fig. 14. Initialization of the final model for the wind data in New York using the BE method (a) and the fit of the trained network 

with 2 HU (b). The WN converged after 225 iterations. 

 

 

 
 

 
Fig. 15. The prediction risk (P.R.) and empirical loss (E.L.) for the first 30 hidden units for the Mackey-Glass equation. 
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   (a)                                                                             (b) 

Fig. 16. The (a) initialization of the WN using the BE method and 21 HUs and (b) the approximation of the WN after the training 
phase for the Mackey-Glass equation.  

 

 
Fig. 17. Out-of-sample prediction of the WN using 21 hidden units. 

 

 
Fig. 18. In-sample confidence intervals (a) and out-of-sample prediction intervals (b) for the Mackey-Glass equation using the 
balancing method (PICP=98.8%). 
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TABLE 1.  

INITIALIZATION OF THE FOUR METHODS 
Case 1 Heuristic RBS SSO BE 

MSE 0.031522 0.031401 0.031331 0.031331 
MSE+ 0.000791 0.000626 0.000121 0.000121 

IMSE 0.630807 0.040453 0.031331 0.031331 

IMSE+ 0.598680 0.302782 0.000121 0.000121 
Iterations 1,501 617 1 1 

Case 2     

MSE 0.106238 0.004730 0.004752 0.004364 
MSE+ 0.102569 0.000558 0.000490 0.000074 

IMSE 7.877472 0.041256 0.012813 0.008304 

IMSE+ 7.872084 0.037844 0.008394 0.004015 
Iterations 4,433 3,097 741 1,107 

Initialization criteria of the four methods for the two cases. Case 

1 refers to function f(x), case 2 to function g(x) and case 3 to the 

Mackey-Glass equation. 

RBS=Residual Based Selection 

SSO=Stepwise Selection by Orthogonalization 

BE=Backward Elimination 

MSE=MSE between the training data and the network 

approximation 

MSE+=MSE between the underlying function and the network 

approximation 

IMSE=MSE between the training data and the network 

initialization 

IMSE+=MSE between the underlying function and the network 

initialization 

 
 

TABLE 2  

PREDICTION RISK AND HIDDEN UNITS FOR THE FOUR INFORMATION CRITERIA 
Case 1 FPE GCV BS CV 

Prediction Risk 0.02088 0.03966 0.04002 0.03991 

Hidden Units 2 3 2 2 

Case 2     

Prediction Risk 0.00041 0.00077 0.00081 0.00078 
Hidden Units 7 14 8 8 

Information criteria for the two cases. Case 1 refers to function  f(x), 
case 2 to function g(x) and case 3 to the Mackey-Glass equation. 

FPE=Final Prediction Error 
GCV=Generalized Cross-validation 

BS=Bootstrap 

CV=50-fold Cross-validation 

 
TABLE 3 

VARIABLE SIGNIFICANCE TESTING FOR THE FIRST CASE USING BOOTSTRAP 
  MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP 

Full model 

(two variables) 

          

X1  1.6242 -2.1524 2.2707 0.0031 -0.1079 0.6998 -0.0267 1.3498 0.0982 

Std.  1.3929 2.3538 2.4426 0.0029 0.0758 0.0391 0.1651 0.4161 0.0045 

p-value  0.0000 0.0000 0.0000 0.0000 0.0614 0.0000 0.6039 0.0000 0.0000 
X2  1.1038 -1.2013 1.4472 0.0003 0.0402 0.1369 0.1033 0.2488 0.0011 

Std.  1.4173 2.6560 2.8320 0.0003 0.0477 0.0277 0.1010 0.1244 0.0013 

p-value  0.0000 0.0000 0.0000 0.0179 0.3158 0.0000 0.4610 0.0000 0.9434 
Reduced  model 

(one variable) 

          

X1  - - - - 0.0800 - - - 0.0988 
Std.  - - - - 0.0433 - - - 0.0051 

p-value  - - - - 0.0000 - - - 0.0000 

MaxD=Maximum Derivative 

MinD=Minimum Derivative 
MaxDM=Maximum Derivative Magnitude 

MinDM=Minimum Derivative Magnitude 

AvgD=Average Derivative 
AvgDM=Average Derivative Magnitude 

AvgL=Average Elasticity 

AvgLM=Average Elasticity Magnitude 
SBP=Sensitivity Based Pruning 
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TABLE 4 

VARIABLE SIGNIFICANCE TESTING FOR THE SECOND CASE USING BOOTSTRAP 
  MaxD MinD MaxDM MinDM AvgD AvgDM AvgL AvgLM SBP 

Full model 

(two variables) 

          

X1  1.6485 -1.8391 1.9459 0.0006 0.0225 0.5412 0.2908 8.9262 0.4191 

Std.  0.3555 0.7505 0.7475 0.0008 0.0736 0.0524 7.0110 5.9525 0.0589 

p-value  0.0000 0.0000 0.0000 0.2867 0.9877 0.0000 0.8708 0.0000 0.0000 
X2  10.0490 -7.7106 11.4443 0.0007 0.0269 0.4564 -0.1217 0.6045 0.0024 

Std.  16.2599 9.5366 16.9065 0.0005 0.0923 0.2912 0.5508 0.7338 0.0085 

p-value  0.07838 0.0762 0.1597 0.4158 0.6686 0.0000 0.7864 0.0000 0.8433 
Reduced  model 

(one variable) 

          

X1  - - 1.7261 0.0009 - - - - 0.4779 
Std.  - - 0.0916 0.0008 - - - - 0.0255 

p-value  - - 0.0000 0.1795 - - - - 0.0000 

MaxD=Maximum Derivative 

MinD=Minimum Derivative 
MaxDM=Maximum Derivative Magnitude 

MinDM=Minimum Derivative Magnitude 

AvgD=Average Derivative 

AvgDM=Average Derivative Magnitude 

AvgL=Average Elasticity 

AvgLM=Average Elasticity Magnitude 
SBP=Sensitivity Based Pruning 

 
 

TABLE 5  

VARIABLE SELECTION WITH BACKWARD ELIMINATION IN BERLIN 

Step 

 

Variable to 

remove (lag) 

Variable to 

enter (lag) 

Variables 

in model 

Hidden Units 

(Parameters) 

n/p 

ratio 

Empirical 

Loss 

Prediction 

Risk 

 - - 7 5 (83) 43.9 1.5928 3.2004 

1 6X  - 6 2 (33) 110.4 1.5922 3.1812 

2 7X  - 5 1 (17) 214.3 1.5927 3.1902 

3 5X  - 4 1 (14) 260.2 1.6004 3.2056 

4 4X  - 3 1 (11) 331.2 1.5969 3.1914 

The algorithm concluded in 4 steps. In each step the following are presented: 

which variable is removed, the number of hidden units for the particular set of 

input variables and the parameters used in the wavelet network, the empirical loss 
and the prediction risk 
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TABLE 6 

STEP BY STEP VARIABLE SELECTION IN BERLIN 

 Full model Step 1 Step 2 Step 3 Step 4 

Variable SBP p-value SBP p-value SBP p-value SBP p-value SBP p-value 

7 0.0026 0.7796 0.0031 0.5700 - - - - - - 

6 0.0032 0.8826 - - - - - - - - 

5 0.0053 0.6757 0.0131 0.0000 0.0206 0.1907 - - - - 

4 0.0161 0.3500 0.0149 0.1403 0.0216 0.1493 -0.0052 0.4701 - - 

3 0.2094 0.0000 0.2368 0.0000 0.2285 0.0000 0.1991 0.0000 0.2244 0.0000 

2 1.1123 0.0000 1.0318 0.0000 1.0619 0.0000 0.9961 0.0000 0.9363 0.0000 

1 9.8862 0.0000 10.0160 0.0000 9.9858 0.0000 10.0537 0.0000 10.1933 0.0000 

MAE 1.8080  1.8085  1.8083  1.8093  1.8095  

Max AE 11.1823  11.1446  11.1949  11.0800  11.0925  

NMSE 0.3521  0.3529  0.3525  0.3526  0.3530  

MAPE 3.7336  3.7127  3.7755  3.7348  3.7171  

2R  63.98%  64.40%  64.59%  64.61%  64.61%  

Empirical Loss 1.5928  1.5922  1.5927  1.6004  1.5969  

Prediction Risk 3.2004  3.1812  3.1902  3.2056  3.1914  

iterations 43  17  19  4  19  

The average SBP for each variable of 50 bootstrapped samples, the standard 

deviation and the p-value. 
SBP= Sensitivity Based Pruning 

MAE=Mean Absolute Error 

Max AE= Maximum Absolute Error 
NMSE=Normalized Mean Square Error 

MSE= Mean Square Error 

MAPE=Mean Absolute Percentage Error 

 
 

TABLE 7 

PREDICTION RISK AT EACH STEP OF THE VARIABLE SELECTION ALGORITHM FOR THE 5 FIRST HIDDEN UNITS FOR BERLIN 

Step\HU 1 2 3 4 5 

0 3.2009 3.2026 3.2023 3.2019 3.2004 

1 3.1817 3.1812 3.1828 3.1861 3.1860 

2 3.1902 3.1915 3.1927 3.1972 3.1974 

3 3.2056 3.2077 3.2082 3.2168 3.2190 

4 3.1914 3.2020 3.2182 3.2158 3.2169 

 

 

TABLE 8 

OUT-OF-SAMPLE PERFORMANCE CRITERIA FOR BERLIN 

MAE 1.7340 

Max AE 9.3330 

NMSE 0.3961 

MAPE 2.4108 

  
2R  59.27% 
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TABLE 9  

VARIABLE SELECTION WITH BACKWARD ELIMINATION IN NEW YORK 

Step 

 

Variable to 

remove (lag) 

Variable to 

enter (lag) 

Variables 

in model 

Hidden Units 

(Parameters) 

n/p 

ratio 

Empirical 

Loss 

Prediction 

Risk 

 - - 7 1 (23) 317.4 0.0467 0.0938 

1 7X  - 6 1 (20) 365.0 0.0467 0.0940 

2 5X  - 5 1 (17) 429.4 0.0467 0.0932 

3 6X  - 4 2 (23) 317.4 0.0467 0.0938 

4 4X  - 3 2 (18) 405.6 0.0468 0.0937 

The algorithm concluded in 4 steps. In each step the following are presented: 
which variable is removed, the number of hidden units for the particular set of 

input variables and the parameters used in the wavelet network, the empirical loss 

and the prediction risk 

 
TABLE 10 

STEP BY STEP VARIABLE SELECTION IN NEW YORK 

 Full model Step 1 Step 2 Step 3 Step 4 

Variable SBP p-value SBP p-value SBP p-value SBP p-value SBP p-value 

7 0.0000 0.8392 - - - - - - - - 

6 0.0000 0.7467 0.0000 0.4855 0.0000 0.9167 - - - - 

5 0.0000 0.6799 0.0000 0.9467 - - - - - - 

4 0.0000 0.5203 0.0000 0.7180 0.0000 0.2643 0.0000 0.7480 - - 

3 0.0001 0.1470 0.0001 0.0000 0.0001 0.4706 0.0001 0.4719 0.0003 0.0000 

2 0.0010 0.0469 0.0010 0.0000 0.0010 0.0000 0.0009 0.0000 0.0010 0.0168 

1 0.0141 0.0000 0.0141 0.0000 0.0137 0.0000 0.0140 0.0000 0.0135 0.0000 

MAE 0.2430  0.2430  0.2428  0.2430  0.2429  

Max AE 1.7451  1.7453  1.7156  1.7541  1.6986  

NMSE 0.8832  0.8832  0.8833  0.8832  0.8834  

2R  11.68%  11.67%  11.67%  11.68%  11.65%  

Empirical Loss 0.0467  0.0467  0.0467  0.0467  0.0468  

Prediction Risk 0.0938  0.0940  0.0932  0.0938  0.0937  

iterations 22  37  26  19  225  

The average SBP for each variable of 50 bootstrapped samples, the standard 

deviation and the p-value. 

SBP= Sensitivity Based Pruning 
MAE=Mean Absolute Error 

Max AE= Maximum Absolute Error 

NMSE=Normalized Mean Square Error 
MSE= Mean Square Error 

MAPE=Mean Absolute Percentage Error 

 
TABLE 11 

PREDICTION RISK AT EACH STEP OF THE VARIABLE SELECTION ALGORITHM FOR THE 5 FIRST HIDDEN UNITS FOR NEW YORK 

Step\HU 1 2 3 4 5 

0 0.09378 0.09380 0.09379 0.09379 0.09380 

1 0.09403 0.09404 0.09403 0.09406 0.09406 

2 0.09321 0.09324 0.09325 0.09326 0.09327 

3 0.09384 0.09380 0.09384 0.09387 0.09386 

4 0.09370 0.09367 0.09368 0.09373 0.09379 
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TABLE 12 

PREDICTING THE CUMULATIVE WIND SPEEDS FOR 1 AND 2 MONTHS IN NEW YORK 

 HBA WN Actual 

1 months 345.5 312.7 311.2 

2 months 658.3 591.1 600.6 

 
 

TABLE 13  

VARIABLE SELECTION WITH BACKWARD ELIMINATION IN WISCONSIN BREAST CANCER DATASET 

Step 

 

Variable to 

remove (lag) 

Variable to 

enter (lag) 

Variables 

in model 

Hidden Units 

(Parameters) 

n/p 

ratio 

Empirical 

Loss 

Prediction 

Risk 

 - - 9 1 (29) 23.6 0.0713 0.1488 

1 
9X  - 8 1 (26) 26.7 0.0713 0.1485 

2 
4X  - 7 3 (53) 12.9 0.0404 0.1136 

3 
3X  - 6 3 (46) 14.8 0.0426 0.1135 

The algorithm concluded in 4 steps. In each step the following are presented: which variable is removed, the 

number of hidden units for the particular set of input variables and the parameters used in the wavelet network, 

the empirical loss and the prediction risk 

 
TABLE 14  

CLASSIFICATION POWER OF THE FULL AND THE REDUCED MODEL 

Model HU Accuracy Epochs Correct Wrong B/B M/B M/M B/M 

Full (out) 1 97.51% 146 666 17 431 4 235 13 

Full (in) 1 97.65% 146 667 16 431 3 236 13 

Reduced 

(out) 3 97.36% 265 665 18 431 5 234 13 

Reduced 

(in) 3 97.51% 264 666 17 431 4 235 13 

The algorithm concluded in 4 steps. In each step the following are presented: which variable is removed, the 

number of hidden units for the particular set of input variables and the parameters used in the wavelet network, 

the empirical loss and the prediction risk 

(in)= in-sample 

(out)=out-of-sample using leave-one-out cross-validation. 
B/B= case is B/ WN predicts B 

B/M= case is B/ WN predicts M 

M/M= case is M/ WN predicts M 
M/B= case is M/ WN predicts B 
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