1,099 research outputs found

    FISSION DYNAMICS WITH MICROSCOPIC LEVEL DENSITIES

    Get PDF
    We present a consistent framework for treating the energy and angularmomentum dependence of the shape evolution in the nuclear fission. It combines microscopically calculated level densities with the Metropolis-walk method, has no new parameters, and can elucidate the energy-dependent influence of pairing and shell effects on the dynamics of warm nuclei

    A measure of majorisation emerging from single-shot statistical mechanics

    Full text link
    The use of the von Neumann entropy in formulating the laws of thermodynamics has recently been challenged. It is associated with the average work whereas the work guaranteed to be extracted in any single run of an experiment is the more interesting quantity in general. We show that an expression that quantifies majorisation determines the optimal guaranteed work. We argue it should therefore be the central quantity of statistical mechanics, rather than the von Neumann entropy. In the limit of many identical and independent subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered but in the non-equilbrium regime the optimal guaranteed work can be radically different to the optimal average. Moreover our measure of majorisation governs which evolutions can be realized via thermal interactions, whereas the nondecrease of the von Neumann entropy is not sufficiently restrictive. Our results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation, same main results / added minor result on pure bipartite state entanglement (appendix G) / near to published versio

    Mapping the proton drip line from Z=31 to Z=49

    Get PDF
    The structure of proton drip line nuclei in the 60 < A < 100 mass range is studied with the Relativistic Hartree Bogoliubov (RHB) model. For the elements which determine the astrophysical rapid proton capture process path, the RHB model predicts the location of the proton drip-line, the ground-state quadrupole deformations and one-proton separation energies at and beyond the drip-line. The results of the present theoretical investigation are compared with available experimental data. For possible odd-Z ground state proton emitters, the calculated deformed single-particle orbitals occupied by the odd valence proton and the corresponding spectroscopic factors are compared with predictions of the macroscopic-microscopic mass model.Comment: 20 pages, LaTeX, 6 eps figs, submitted to Nucl. Phys.

    Local Spectral Density for a Periodically Driven System of Coupled Quantum States with Strong Imperfection in Unperturbed Energies

    Full text link
    A random matrix theory approach is applied in order to analyze the localization properties of local spectral density for a generic system of coupled quantum states with strong static imperfection in the unperturbed energy levels. The system is excited by an external periodic field, the temporal profile of which is close to monochromatic one. The shape of local spectral density is shown to be well described by the contour obtained from a relevant model of periodically driven two-states system with irreversible losses to an external thermal bath. The shape width and the inverse participation ratio are determined as functions both of the Rabi frequency and of parameters specifying the localization effect for our system in the absence of external field.Comment: 6 pages, 5 figures, submitted to Optics and Spectroscop

    Measuring movement fluency during the sit-to-walk task

    Get PDF
    Restoring movement fluency is a key focus for physical rehabilitation; it's measurement, however, lacks objectivity. The purpose of this study was to find whether measurable movement fluency variables differed between groups of adults with different movement abilities whilst performing the sit-to-walk (STW) movement. The movement fluency variables were: (1) hesitation during movement (reduction in forward velocity of the centre of mass; CoM), (2) coordination (percentage of temporal overlap of joint rotations) and (3) smoothness (number of inflections in the CoM jerk signal)

    An affordable methodology for quantifying waterborne microplastics - an emerging contaminant in inland-waters

    Get PDF
    The occurrence of microplastics in marine habitats is well documented and of growing concern. The presence of these small (<5 mm) pieces of plastic is less well recorded in inland water systems. In this paper, we determine a cost-efficient and straightforward method for the collection and identification of microplastics in UK inland waters. We found pieces of microplastic from all sample sites ranging from over 1000 L-1 in the River Tame, to 2.4 L-1 in Loch Lomond. The presence of microplastics in all waters tested suggest it should now be classed as an emergent contaminant, with routine monitoring required

    Ground-state properties of deformed proton emitters in the relativistic Hartree-Bogoliubov model

    Full text link
    The Relativistic Hartree Bogoliubov (RHB) model is applied in the description of ground-state properties of proton-rich odd-Z nuclei in the region 53Z6953 \leq Z \leq 69. The NL3 effective interaction is used in the mean-field Lagrangian, and pairing correlations are described by the pairing part of the finite range Gogny interaction D1S. The model predicts the location of the proton drip-line, the ground-state quadrupole deformations and one-proton separation energies at and beyond the drip-line, the deformed single-particle orbitals occupied by the odd valence proton, and the corresponding spectroscopic factors. The results of fully self-consistent RHB calculations are compared with available experimental data, and with predictions of the macroscopic-microscopic mass model.Comment: 39 pages, Latex, 6 e.p.s figures, Nucl. Phys. A in prin

    Unconventional decay law for excited states in closed many-body systems

    Get PDF
    We study the time evolution of an initially excited many-body state in a finite system of interacting Fermi-particles in the situation when the interaction gives rise to the ``chaotic'' structure of compound states. This situation is generic for highly excited many-particle states in quantum systems, such as heavy nuclei, complex atoms, quantum dots, spin systems, and quantum computers. For a strong interaction the leading term for the return probability W(t)W(t) has the form W(t)exp(ΔE2t2)W(t)\simeq \exp (-\Delta_E^2t^2) with ΔE2\Delta_E^2 as the variance of the strength function. The conventional exponential linear dependence W(t)=Cexp(Γt)W(t)=C\exp (-\Gamma t) formally arises for a very large time. However, the prefactor CC turns out to be exponentially large, thus resulting in a strong difference from the conventional estimate for W(t)W(t).Comment: RevTex, 4 pages including 1 eps-figur
    corecore