The use of the von Neumann entropy in formulating the laws of thermodynamics
has recently been challenged. It is associated with the average work whereas
the work guaranteed to be extracted in any single run of an experiment is the
more interesting quantity in general. We show that an expression that
quantifies majorisation determines the optimal guaranteed work. We argue it
should therefore be the central quantity of statistical mechanics, rather than
the von Neumann entropy. In the limit of many identical and independent
subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered
but in the non-equilbrium regime the optimal guaranteed work can be radically
different to the optimal average. Moreover our measure of majorisation governs
which evolutions can be realized via thermal interactions, whereas the
nondecrease of the von Neumann entropy is not sufficiently restrictive. Our
results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation,
same main results / added minor result on pure bipartite state entanglement
(appendix G) / near to published versio