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Abstract. Working within the Langevin framework of nuclear shape dynamics, we study
the dependence of the evolution on the degree of excitation. As the excitation energy of
the fissioning system is increased, the pairing correlations and the shell effects diminish
and the effective potential-energy surface becomes ever more liquid-drop like. This fea-
ture can be included in the treatment in a formally well-founded manner by using the
local level densities as a basis for the shape evolution. This is particularly easy to un-
derstand and implement in the Metropolis treatment where the evolution is simulated by
means of a random walk on the five-dimensional lattice of shapes for which the potential
energy has been tabulated. Because the individual steps between two neighboring lattice
sites are decided on the basis of the ratio of the statistical weights, what is needed is the
ratio of the local level densities for those shapes, evaluated at the associated local exci-
tation energies. For this purpose, we adapt a recently developed combinatorial method
for calculating level densities which employs the same single-particle levels as those that
were used for the calculation of the pairing and shell contributions to the macroscopic-
microscopic deformation-energy surface. For each nucleus under consideration, the level
density (for a fixed total angular momentum) is calculated microscopically for each of the
over five million shapes given in the three-quadratic-surface parametrization. This novel
treatment, which introduces no new parameters, is illustrated for the fission fragment
mass distributions for selected uranium and plutonium cases.

1 Introduction

Soon after the discovery of nuclear fission in 1938 [1], it was recognized that the process can be
viewed qualitatively as an evolution of the nuclear shape from that of a single compound nucleus
to two receding fragments [2, 3] and that Langevin transport theory provides an appropriate model
framework [3, 4]. A number of Langevin treatments of fission have been successfully developed and
applied for excitations high enough to render the dynamics macroscopic, see for example Refs. [5-7].

If the collective shape dynamics is idealized as being highly dissipative, then the Langevin equa-
tion reduces to the Smoluchowski equation in which the evolution depends on the balance between
the driving force provided by the potential energy of deformation and the dissipative force result-
ing from the coupling of the collective degrees of freedom to the remaining system. In this limit, it
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has proven possible to describe the Brownian shape motion as a Metropolis walk on the associated
multi-dimensional deformation-energy surface [8]. This calculationally simple method has yielded
remarkably good results for the fission-fragment mass distributions [9] and it has made it possible to
predict fission-fragment mass distributions for poorly explored regions of the nuclear chart [10, 11].

2 Microscopic shape-dependent level density

In Ref. [12] a method was developed for microscopic calculations of level densities for deformed
nuclei and it has been adapted to the fission process [13]. For a specified shape y, the single-particle
levels for protons and neutrons needed for the combinatorial calculation of the level density are ob-
tained by solving the Schrédinger equation in the associated folded-Yukawa potential. These are the
same levels as those previously used in Ref. [11] to calculate the microscopic shell and pairing ener-
gies in the construction of the deformation energy surface, thus guaranteeing consistency of the treat-
ment. The corresponding local many-body vacuum state |0; x) has N neutrons and Z protons filling
the lowest single-particle states and the uncorrelated excited states consist of all multiple particle-hole
excitations,

i) = ]_! alya 0100 (1)
For each many-body state |i; ), blocked BCS calculations for neutrons and protons separately provide
the state-dependent pairing gaps, Al'(y) and Af (x), respectively, and the energy of the correlated
intrinsic many-body state, E;(x) = E}'(x) + E} (x).

For each such intrinsic state, the angular momentum along the nuclear symmetry axis is denoted
by K and it is assume that it forms a rotational band head. The resulting total angular momenta / may
then take on the values I = K, (K + 1), (K + 2),... and the corresponding rotational energies of the
band members are

I+ 1) - Ki(x)?

The moment of inertia 7, is approximated by the moment of inertia of a rigid body with the shape y;,
modified by the calculated pairing gaps for the state [14].

In Ref. [12] it was found that the enhancements arisng from collective vibrational modes are
unimportant and they are therefore ignored in the present fission applications. The total energy of a
state is then given by

Eert(I’X) —

@)

E(lx) = ENx)+EP(0) + E”' (L x) - 3)

For each shape y, the resulting states are binned according to their energy E; and their total angular
momentum /; the bin width was taken as AE = 200keV. The sensitivity of our results to the bin size
has been tested and it was found that a doubling or tripling of AE produces negligible changes in the
calculated mass distributions.

In Fig. 1, we show calculated level densities versus the backshifted excitation energy for three
special shapes for which the shell and apiring energies have different magnitudes. At the second
minimum, the gaps in the single-particle spectra for neutrons and protons provide the special stability
of this shape region, quantitatively expressed by a considerable negative shell correction energy. On
the other hand, the same gaps render it costly in energy to make particle-hole excitations, resulting in
a slow increase of the level density when the nucleus is excited. The opposite situation is encountered
at the symmetric barrier, where a high density of single-particle states around the Fermi energy results
in a large positive shell correction energy, while at the same time delivering particle-hole states at a
low cost in energy, providing a rapid increase of the level density with local excitation energy.
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s Figure 1. The microscopic level density, p(E),
' ' ' ' ' calculated for 23U at angular momentum / = 4%,
plotted versus the backshifted energy defined as
El . = E" + Egq + Ec Where Eg, is the shell en-
ergy and E\ is the pairing correlation energy; three
selected shapes are illustrated, either with (solid)
or without (dashed) pairing: (i) the second mini-
mum (red) (Eg, = —5.4 MeV, E,. = —1.5 MeV),
(ii) the outer symmetric fission barrier (blue) (Eg, =
+8.7 MeV, E,. = —6.1 MeV), and (iii) an inter-
mediate shape (green) (Ey, = —0.3 MeV, E,. =
70 15 20 —2.5MeV).
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These opposite effects of the shell structure on the potential energy and on the level density cause
the no-pairing results (dashed curves on Fig. 1) to converge towards the level density with zero shell
energy, illustrating the suppression of shell energy with increasing exitation energy, as discussed in
Refs. [15-17].

The effects on the level density from shell structure and pairing correlations subside steadily as the
excitation energy is increased. Two different energy scales are involved, with the pairing disappearing
at a lower excitation energy than the shell structure. The present study of fission shape evolution
considers a large number (> 5 - 10°) of nuclear shapes and, consequently, a large variety of shell
and pairing energies appear. It is therefore important to employ a level density that accounts for the
changes in shell and pairing effects when the shape is varied. This can be ensured by employing a
microscopic calculation of the level density up to sufficiently high excitation energies for all shapes
considered. To reduce the required computation times, we employ an extrapolation procedure that
takes account of the changes in pairing and shell effects with excitation energy for each shape.

Because the computational effort required by the combinatorial method grows exponentially with
excitation, it is practically important to develop a simple way of extending the results to high energy.
We do that by switching to an analytical expression at E*(y) ~ 6 MeV, below which most of the
specific structure effects, such as spectral gaps or non-monotonic behavior, have disappeared. In this
way, important structures in the level density are maintained, while the numerical calculations are kept
to a manageable level (about 3 CPU seconds per shape). For each particular shape y, the extrapolation
makes use of its specific shell and pairing energies, Eq,(x) and Ep.(x). Their influence diminishes with
increasing energy and the level density approaches the analytical expression for a Fermi gas.

We employ the following simple analytical Fermi-gas expression [21], which is suitable for de-
formed nuclei with a fixed small angular momentum,

P(N.Z.E*(x).) = C(x) E;}/* exp (2 \/aoEm), @)

where Ein = E*(y) — I(I + 1)1? /2.9, (x) is the approximate intrinsic energy. Accounting for the dif-
ferent energy scales of shell effects and pairing effects, we introduce a backshifted intrinsic excitation
energy Eine, which is similar to the effective excitation E}; of Ref. [9] and can be considered as a
generalization of the prescription originally employed by Ignatyuk et al. [17],

Eine() = Eine(y) + (1= o WEnEy, 4 (1 - e b0l Fy )
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Here Eg,(x) is the shell-correction energy and Ejc(x) is the pairing condensation energy, both calcu-
lated for the lowest state at the specified shape y. The full backshift, Eiyy = Eine + Esn + Ejpc €merges
when Ejy, is much larger than both damping scales.

The parameter Eq g, sets the energy scale for the melting of shell structure and the parameter Eq
is the corresponding energy scale for the melting of pairing correlations. For simplicity, both quauti-
ties are assumed to be common to all shapes. By fitting the analytic expression for a number of typical
shapes, optimal values of Eq g, and Eqp. were determined then applied for all shapes. The normaliza-
tion constant C(y) in Eq. (4) is determined by continuity with the corresponding microscopic value at
the matching energy. The validity of the analytical extrapolation is illustrated in Fig. 2.
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Figure 2. Microscopic level densities (solid lines) compared to extrapolated values (dashed lines). Three differ-
ent deformations for 2*°U are considered: the second minimum (A), the asymmetric second saddle (B), and an
elongated symmetric shape close to the outer barrier (C). Extrapolated values are shown for local excitation ener-
gies E*(y) = 6 MeV. The inset shows the angular momentum dependence of the level density at the asymmetric
saddle (B) for different excitation energies.

3 Brownian shape evolution

The description of nuclear fission as a generalized Brownian motion builds on the assumption that the
evolving nucleus can be characterized by its shape degrees of freedom y. The associated shape param-
eters are treated as classical variables that are coupled dissipatively to the remaining nuclear degrees
of freedom which have a primarily microscopic character and are assumed to have a short relaxation
time. The resulting large-amplitude collective motion then exhibits a strongly damped diffusive evo-
lution that can be described as a random walk on the associated multi-dimensional potential-energy
surface U(y). When the values of the potential are available on a discrete lattice of shapes (as is the
case for the 5D tabulations in Ref. [18]), the Smoluchowski equation can be approximately simulated
by means of a random walk on this lattice [8].

Because the random walk must satisfy detailed balance, the following relation must hold between
the rates of transition between one lattice site y and another ', v(y — Xx’), and the corresponding
statistical weights which are proportional to the local level densities, p(x),

vix = XDV = x) = pix)/p(x) . (6)

This condition can be satisfied in many ways and the Metropolis procedure [19] is merely one par-
ticularly simple possibility: A proposed shape change from y to x’ is accepted unconditionally if
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p(x’) > p(x) (corresponding to a "downhill" step), whereas it it accepted only with the probabilty
p(x)/p(x) otherwise (i.e. if the proposed step is "uphill"); it is readily verified that this procedure
satisfies detailed balance.

In Ref. [8] and all subsequent applications until recently [13], simplified Fermi-gas level-density
expressions were used, pe(y) = exp[2E — U(x)]. Because there is no explicit dependence on the
shape, the ratio between neighboring level densities can be approximated by means of a logarithmic
expansion,

P o lLomeEY 000, 1 s
) OE 3¢

where AU = U(x’) — U(y) is the change in the potential energy associated with the proposed shape
change y = ¥’ = x + Ay and T(x) = 1/[01np(E*)/OE*] is the local nuclear temperature. In the new
treatment [13], we wish to account for pairing correlations and shell effects and we therefore employ
the microscopic level densities (see Sect. 2) to evaluate the required ratios p(x”)/p(x).

To obtain a general understanding of the Brownian shape evolution towards fission, we have stud-
ied trajectories for the case 23°U at E*=6.55 MeV. The aggregate number of visits to different sites on
the shape lattice is shown in Fig. 3, projected onto the plane of mass asymmetry «, and elongation
q>. The solid black curve shows the mean "scission" elongation, i.e. the average elongation, ¢,, for
random walks terminating with a particular mass asymmetry «,.

The potential-energy landscape plays a key role in the shape evolution. The Metropolis walks all
start in the second potential-energy minimum at a; = 0 and g, = 2.36. From this starting point, they
exhibit a diffusive track that probes the potential landscape at ever larger deformations, including the

(N

Figure 3. Contour diagrams (on a logarithmic
scale) of the cumulative number of visits to shape
lattice sites with asymmetry @, and elongation ¢,
for 22°U at E* = S, =6.55 MeV. Panel (a) includes
all tracks, whereas panel (b) contains only tracks
that end in symmetric fission (a,=0). Energy min-
ima are shown as solid circles, while saddle points
are shown as crosses. The solid black curve shows
the mean "scission" elongation (where the random
walk is halted and the mass split binned). The ridge
separating the symmetric valley from the asymmet-
ric valleys is shown as a solid red/dashed green

Elongation q»

L | % saddles curve, where green/red indicates that the ridge is
- | ==—a inaccessible ridge « . .

c | o= accessible ridge below/above the total energy E* and thus is either
C = mean scission elongation accessible or inaccessible, respectively. Symmetric

fission events generally occur at larger elongations.
This bimodal character of the mass distribution
reflects the asymmetry dependence of the shell-
correction energy in the scission region: Wheeras
for asymmetric splits the combined shell correction
of the two prefragments encourages early neck for-
mation, the more symmetric scission shapes tend to
have a smaller shell energy.
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third minimum of potential energy located at an asymmetric shape having a; ~ +0.1 and g, ~ 4. The
distribution of site visits exhibits maxima in the regions around the second and third minima.

Beyond the outmost saddle point(s), around @, ~ +0.2 and g, ~ 5, the potential starts to slope
steadily down towards scission. Most often, a decreasing potential is accompanied by an increase in
the level density and the Metropolis walk then changes its character from being diffusive in character
to being drift dominated. As a result, "backwards" steps become unlikely and the average number of
site visits tend to become relatively constant with elongation.

Concurrent with this steady drift in elongation, sideways diffusive steps are taken, thus providing
some possibility for probing the potential with regard to changes in the fragment deformations, the
neck radius, and, most important, the mass asymmetry @,. A prominent region of shapes where this
kind of evolution occurs is the interval 6 < g> <9, 0.1 < @, < 0.24 (displaying a rather uniform light
green color on Fig. 3a).

Turning now to symmetric shapes, a; ~ 0, we note that for the considered energy, E* = 6.55 MeV,
it is not possible to pass directly through the barrier region while keeping «, close to zero. Therefore,
in order to reach elongated symmetric shapes, the nucleus must first acquire some degree of asym-
metry. A comparison between the upper and lower parts of Fig. 3 shows that the diffusion process
indeed proceeds in identical ways up to elongations of ¢, ~ 5. But for elongations lager than ¢, =~ 5,
the potential landscape displays sloping asymmetric and symmetric valleys separated by a (sloping)
ridge. The ridge location in the (g», @,) plane is indicated in Fig. 3, with the color of the ridge line
indicating whether the ridge lies below (green) or above (red) the total energy. This implies that the
distribution of tracks leading to symmetry is markedly different from the overall distribution.

4 Energy dependence of the fragment yields

The Metropolis walks were performed on a discrete lattice of more than five million shapes given in
the three-quadratic-surface parametrization [20]. The five independent parameters characterizing a
shape are the overall elongation of the nucleus (in terms of the reduced quadrupole moment ¢5), the
constriction of the central part (in terms of the neck radius ¢), the spheroidal deformations & and &p
of the two nascent fragments, and the reflection (mass) asymmetry ..

The use of microscopic level densities is particularly well-suited for studying the dependence of
the shape evolution on the total excitation energy of the fissioning system because the microscopic
pairing and shell effects automatically disappear the energy is raised.

The preliminary treatment in Ref. [9] used an energy-dependent effective potential,

UE(X) = Umacro(X) + S(E*(X)) Emicro(/\/) s (8)

which is obtained by reducing the microscopic term with a suppression factor of the form S(E*) =
(1 + ¢)/[exp(E™/ Eqamp) + c], which decreases from one to zero as the local excitation E* = E — U(y)
increases. The damping energy in the suppression fucntion was fixed to be Egayp = 15MeV and the
constant ¢ = 20MeV was adjusted to ensure reproduction of the experimental yields for fission of
24y at E* = 11 MeV [23]. The local statistical weights are then proportional to a simplified Fermi-
gas level density, pp(x) ~ exp[2+E — Ug(x)], and the Metropolis walk can thus be carried out as
before without any other modifications of the code which is obviously very convenient. Although
this approach yields quite reasonable results [9], it is unsatisfactory from a theoretical point of view
because it fails to take account of the different energy scales of the pairing and shell effect as well as
of their dependence on the nuclear shape.

Figure 4 shows the calculated charge yields for 2**U, as obtained by either using the simplified
Fermi-gas level density based on the effective potential Eq. (8) introduced in Ref. [9] or the micro-
scopic level densities [13]. The experimental data for 2>3U(ng,,f) [22] and 2**U(y,f) [23] are also
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Figure 4. Fission-fragment charge distributions for 2**U at three different excitation energies E* (MeV): 6.84
(a), 11 (b), and 16 (c). The blue solid curves have been obtained with the microscopic level densities, while
the dashed red curves were calculated with the effective level density p.s introduced in Ref. [9]. The results
for E* = 6.84 MeV are compared to (ny,, f) data [22], while those for E* = 11 MeV are compared to (y, f) data
[23]. The calculated results for E* = 6.84 MeV are practically identical and both are in good agreement with the
experimental data. For E* = 11 MeV the present approach reproduces the symmetric yield of around 2%, while
the very asymmetric yields are too large. The calculated yields for E* = 16 MeV are also quite similar.

shown. The (n,f) results are similar (and in good agreement with the data). For E* = 11 MeV,
the current approach correctly reproduces the symmetric yield of around 2%, whereas the yields for
highly asymmetric splits are too large. The yields for E* = 16 MeV come out quite similar in both
approaches.

The transition from asymmetric to symmetric fission with increasing energy in the actinides is
usually associated with the "melting" of shell structure, with the yield gradually assuming the sym-
metric form characteristic of the macroscopic limit. This feature appears automatically when the
microscopic level densities are used [13], as illustrated in Fig. 5 for fission of 2367 at various excita-
tions. As the energy is increased from 6.55 to 11.55 MeV there is a marked increase in the symmetric
component because the shape diffuses ever more readily into the symmetric valley as the microscopic
effects attenuate. At still higher energies the pairing and shell effects have largely subsided and the
level density is determined by the excitation above the macroscopic potential, favoring symmetry.
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The importance of taking account of nuclear structure effects in the level density is well illustrated
by the energy dependence of the fission-fragment yield for symmetric splits. Figure 6 displays results
for the nucleus 2*°U obtained with different strengths of the pairing interaction entering into the mi-
croscopic level densities. The standard calculation leads to a local maximum at E* = 7 MeV, followed
by a local minimum at 8 MeV; this bump is followed by a second bump ending with an inflection at
around 10 MeV. The experimental data exhibit a qualitatively similar behavior, in particular a local
maximum at E* = 7MeV. Without pairing, the absence of a gap produces a larger level density,
especially for shapes with positive shell corrections, where both the gap and the single-particle level
density are larger. The non-monotonic behavior of the symmetric yield has its origin in the structure
of the microscopic level density related to pairing. It is thus evident that the symmetric yield is highly
sensitive to the pairing properties of the level density.

g 10 E oap 3 Figure 6. The dependence of the symmetric mass
s [ 1 yield for U on the excitation energy. In addition
i_ 10 - to the standard calculation (filled blue circles) are
§ E 3 shown two additional calculations: one where the
o [ 1 level densities are obtained without pairing (green
2 107 —{ crosses) and one where the pairing strength is 25%
7 E 3 3 above the standard value (purple triangles). (It
£ L Ig o, stdpaiing 7 g the same potential-energy surface that has been
2 102 ] ‘x:x‘ Pmic: 19 2amng. - used in all three calculations, namely the surface
D E Pric 125% pairing 3 R . .

g E m  Exp, Ref. [22] 3 obtained with the standard pairing strength [18].)
3 L O Exp, Ref. [24] 1 Also shown are the experimental data from Refs.
@ 10‘36 ‘8 1‘0 E— 1‘2 ‘ [22] (solid squares) and [24] (open squares).

Excitation energy E_

(MeV)

5 Conclusions and outlook

We have refined the Metropolis-walk approximation to the Brownian-motion treatment of fission dy-
namics [8] by employing microscopic local level densities obtained by the recently developed combi-
natorial method [12]. Because the single-particle levels used are the same as those employed for the
macroscopic-microscopic calculation of the potential-energy surfaces, the approach is consistent and
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no new parameters need be introduced. Moreover, the combinatorial procedure provides access to the
level density for a fixed value of angular momentum.

In order to reduce the considerable computing effort required for calculating the level density up
to sufficiently high excitations, we employ an analytical extension above ~6 MeV where the combi-
natorial level density has become smooth. This procedure uses a damped backshift of the excitation
energy based on the local pairing and shell energies. In this manner, we have obtained the local level
density p(N, Z, E, I; x) for over 5 million shapes of several nuclei in the uranium region and for angular
momentaup to/ =9.

Using these parameter-free microscopic level densities with the Metropolis-walk method, we cal-
culate fission fragment charge distributions for 22°Th, 2*4236U, and 2*°Pu. The agreement with exper-
imental data was on par with or better than what was obtained previously with a phenomenological
level-density parametrization [9]. The angular-momentum dependence of the fission yields was found
to be relatively small and decreasing with increasing excitation energy.

Because the microscopic level densities automatically contain the diminishing effects of pairing
correlations and shell structure, the present refined model makes it possible to make more detailed
predictions for the energy dependence of the fission yields. The gradual transition from asymmetric
to symmetric fission and the detailed energy dependence of the symmetric yield were studied.

Particularly interesting is the finding that the symmetric fragment yield is not monotonically in-
creasing with excitation energy. This perhaps counter intuitive effect appears to be a result of the
large pairing correlations for shapes with positive shell-correction energies separating the asymmetric-
fission path from symmetric shapes. It is in this connection intriguing that a recent experiment has
reported a non-monotonic energy dependence of the asymmetric peak shape in the fragment mass
yields for fission of 2*°Pu [25]. We plan to investigate these phenomena in more detail.

The present refined model provides a consistent and computationally manageable theoretical
framework for studying large-scale collective motion of warm nuclear systems far from equilibrium
and, in particular, it provides a unique tool for calculating energy-dependent fission fragment mass
distributions. The present work extends the use of microscopic level densities from nuclei in shape
equilibrium to arbitrary shapes and our present studies have revealed the intriguing possibility that
the pairing interaction in shapes far from equilibrium. may manifest itself in a measurable manner
through the energy dependence of the fisssion yields.

We are grateful to N. Schunck, A.Tonchev, and R. Vogt for discussions, helpful comments, and valuable sug-
gestions. This work was supported by the Swedish Natural Science Research Council (BGC and SA), by the
National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396 (PM), and by the Office of Nuclear Physics in the U.S. Department
of Energy(tm)s Office of Science under Contract No. DE-AC02-05CH11231 (JR).
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