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First principles calculation of point defects and mobility degradation in
bulk AlSb for radiation detection application
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Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, USA

ABSTRACT

The development of high resolution, room temperature semiconductor radiation detectors requires the introduction of
materials with increased carrier mobility-lifetime (µτ ) product, while having a band gap in the 1.4–2.2 eV range. AlSb
is a promising material for this application. However, systematic improvements in the material quality are necessary to
achieve an adequateµτ product. We are using a combination of simulation and experiment to develop a fundamental
understanding of the factors which affect detector material quality. First principles calculations are used to study the
microscopic mechanisms of mobility degradation from pointdefects and to calculate the intrinsic limit of mobility from
phonon scattering. We use density functional theory (DFT) to calculate the formation energies of native and impurity point
defects, to determine their equilibrium concentrations asa function of temperature and charge state. Perturbation theory
via the Born approximation is coupled with Boltzmann transport theory to calculate the contribution toward mobility
degradation of each type of point defect, using DFT-computed carrier scattering rates. A comparison is made to measured
carrier concentrations and mobilities from AlSb crystals grown in our lab. We find our predictions in good quantitative
agreement with experiment, allowing optimized annealing conditions to be deduced. A major result is the determination
of oxygen impurity as a severe mobility killer, despite the ability of oxygen to compensation dope AlSb and reduce the net
carrier concentration. In this case, increased resistivity is not a good indicator of improved material performance, due to
the concomitant sharp reduction inµτ .

Keywords: Mobility, carrier lifetime, aluminum antimonide, semiconductor, defect, impurity, formation energy, density
functional theory

1. INTRODUCTION

High resolution, room temperature gamma radiation detectors are important for a variety of applications, including home-
land security, nuclear nonproliferation and monitoring, medical imaging, and space imaging. The problem of developing
such a detector is essentially a materials issue.1, 2 The use of semiconductors for the active material is particularly attractive,
due to the wide spectrum of properties available and the ability to tune the properties over large ranges by,e.g., doping, al-
loying, and thermal treatment. Several materials parameters are critical for the development of a gamma radiation detector
that operates with high energy resolution at room temperature.

An appropriate band gap in the range of∼1.4–2.2 eV is essential. The detector operates basically bycounting the number
of electron-hole pairs created in the semiconductor from anincident gamma ray. The number of carriers generated will be
proportional to the ratio of the gamma ray energy to the band gap energy (divided by and ionization factor in the range of
2–3.5). It is generally desired to maximize the number of generated carriers to reduce the statistical counting noise (which
varies as the square-root of the number); this requirement sets the practical upper bound of the desired band gap range. On
the other hand, thermal excitation of valence electrons across the band gap will generate a number of carriers proportional
to exp(−Eg/kBT ), whereEg is the band gap energy,kB is Boltzmann’s constant, andT is absolute temperature. The
practical lower limit for the band gap is determined by the requirement to minimize the background signal from thermally
generated carriers, enabling room temperature operation.

Furthermore, we generally require materials containing high-Z elements (& 50) to efficiently stop high energy gamma rays
in a practical volume of material. Roughly speaking, high performance gamma detection within a crystal volume on the
order of 1–100 cm3 is desired. Such a volume implies a required stopping lengthon the order of 1–10 cm. Moreover, the
large crystal volume implies a requirement that carrier drift lengths in the material approach distances≫1 cm, for highly
efficient collection at the electrodes (i.e., counting) of the generated carriers from each incident gamma ray. The resolution

∗Send correspondence to V.L.: lordi2@llnl.gov; phone 1 925 423 2755



and energy range of the detector will depend on the ratio of the drift length to the device thickness.3 Typically, a ratio of at
least 100 is sought.

The requirement of very long carrier drift lengths in the semiconductor is the main issue in selecting and optimizing a
material for radiation detection application, and is also the major basis of differentiation for the performance of different
materials. The drift length,λd, in the semiconductor is related to the carrier mobility,µ, and the average carrier lifetime,τ ,
throughλd = µτE, whereE is the magnitude of the electric field in the crystal. The electric field is generally maximized
in a device by applying a voltage close to the breakdown voltage of the material, which depends on its purity. Then,E
will be determined by the applied voltage divided by the length between the contacts, and will not vary very much between
materials of adequate purity for use in radiation detectors. On the other hand,µ andτ are material parameters that can
vary greatly for a given material depending on the growth conditions, processing history, and levels of various defects.
At relatively high temperatures (i.e., room temperature),µ will be limited by electron-phonon scattering, but defectsin
the material can causeµ to be considerably lower than this upper bound. For high resolution detectors (e.g., . 1% at
662 keV), aµτ product& 0.1 cm2/V is required. We will useµτ as a figure of merit which we seek to maximize for
candidate radiation detector materials.

Growth of large, high purity, uniform single crystals is often difficult, and development efforts can be quite expensive.
Currently, the best available semiconductor material for room temperature detection is CdZnTe (CZT), which can achieve
energy resolution less than 1%. However, growth of CZT to-date produces extremely inhomogeneous crystals containing
both microscopic and macroscopic defects. To achieve the highest performance from CZT requires careful harvesting
of many small crystals with the desired materials properties (sometimes from multiple growths) and fabricating complex
detector arrays to incorporate, in aggregate, the requiredcrystal volume. The result is an impractically high materials cost
due to the extraordinarily low yield of the best usable material, up to∼100,000 USD for a single detector.

We seek to use first principles calculations of materials properties in conjunction with experimental efforts of growthand
post-growth heat treatment to accelerate the development cycle of new materials. Particularly, we seek to understand the
theoretical limits of materials performance for radiationdetection application in order to judge the suitability of agiven
material and also benchmark the quality of grown crystals. Adetailed, mechanistic understanding of the nature and effects
of various defects in the crystal enables a focused experimental effort in optimizing the material quality. The goal is to
grow large, uniform single crystals, enabling potentiallylow cost, high resolution room temperature detectors.

AlSb, with a band gap of 1.61 eV at room temperature, is a promising candidate semiconductor to meet the requirements
outlined above. Optimized growth of this material has been hindered by a host of defects that adversely affect the mobility.
We are using a joint theoretical and experimental effort to understand the nature, concentration, and effects on mobility of
the various defects, to systematically improve the qualityof crystals and find optimized annealing conditions. In thispaper,
we focus on the native defects in AlSb, as well as O and C impurities. We use density functional theory (DFT) to calculate
the equilibrium atomic structure of each defect, its formation energy, the equilibrium defect and carrier concentrations
as functions of temperature, and the strength of mobility degradation related to each defect. We relate our predictionsto
measured properties of various large, high-purity AlSb single crystals grown in our lab. Particularly, we correlate minimum
defect densities to equilibrium densities of native defects (particularly Al vacancies) and correlate measured values of
carrier concentrations to the incorporation of oxygen impurities which compensate the naturallyp-type material. We also
predict that O impurities are particularly detrimental to carrier mobilities, consistent with experimental suggestions. Our
calculations also lead to predictions of appropriate post-growth annealing temperatures. By annealing at 1200 K for 8 d,
we have been successful in reducing carrier densities in ourAlSb material to∼3× 1013 cm−3 (partially compensated) and
total defect densities to∼3 × 1016 cm−3, with corresponding hole mobilities of a few hundred cm2/V-s.

2. METHODOLOGY

2.1 Computational methods

We use density functional theory to study the stability of point defects in different charge states by calculating theirequilib-
rium atomic structures and the corresponding total energies. We calculate defect formation energies to obtain equilibrium
concentrations of each defect as a function of temperature.We then calculate net carrier concentrations taking into ac-
count compensating effects of oppositely charged defects.Using perturbation theory, we estimate the strength of carrier
scattering of the dominant defects, to determine a relativeranking for mobility degradation of each defect.



The goal is to perform fully first principles calculations (no free parameters) to be predictive. This work is part of a
larger program to study defects in a large class of semiconductors for radiation detection application using first principles
computational methods, as well as predict quantitatively the related electronic transport properties (e.g., µτ ). In this paper,
we will focus only on the native defects in AlSb, and O and C substitutional impurities in AlSb (on the Sb site).

2.1.1 Atomic relaxation

Atomic scale models of AlSb, a binary zinc-blende alloy, andall of the defect structures were constructed and relaxed
to determine the equilibrium structures. The theoretical lattice constant of AlSb was determined by performing a volume
relaxation, and this value of lattice constant was used in all calculations. Models for all of the native defects (i.e., those
involving only the atoms in the pure compound or a lack thereof) were constructed, as well as models of O and C sub-
stitutions for Sb. Supercells of various sizes were used, ranging from 32 to 216 atoms, to enable extrapolation of defect
formation energies to the infinitely dilute limit (see Sec. 2.1.2). Each supercell contained one defect. Table 1 lists all of the
possible native point defects in AlSb, along with their notations. Each defect may exist in a number of charge states; gener-
ally, we have considered charge states up to±3e. To avoid high symmetry local energy minima in the atomic relaxations,
we performed multiple relaxations of each structure starting from different randomized initial configurations. Convergence
to the same lowest total energy structure for each starting configuration and supercell size was confirmed. Structures that
relaxed toward very different symmetry configurations (equivalent to another defect structure) were deemed unstable and
discarded. Sometimes, only certain charge states of a givendefect were found to be stable.

Table 1. Notation of possible native point defects in AlSb.

Symbol Point defect type
VAl , VSb Al vacancy, Sb vacancy

AlSb, SbAl Al antisite, Sb antisite
Al i,Al , Al i,Sb Al tetragonal-site interstitials: Al-coordinated site, Sb-coordinated site
Sbi,Al , Sbi,Sb Sb tetragonal-site interstitials: Al-coordinated site, Sb-coordinated site
Al i,hex, Sbi,hex Al hexagonal-site interstitial, Sb hexagonal-site interstitial

AlAl Al,〈100〉, AlAl Al,〈110〉 Al split interstitials (intersticialcy), oriented along〈100〉 or 〈110〉 directions
SbSbSb,〈100〉, SbSbSb,〈110〉 Sb split interstitials (intersticialcy), oriented along〈100〉 or 〈110〉 directions
AlSbAl,〈100〉, AlSbAl,〈110〉 Mixed split interstitials on Al site, oriented along〈100〉 or 〈110〉 directions
AlSbSb,〈100〉, AlSbSb,〈110〉 Mixed split interstitials on Sb site, oriented along〈100〉 or 〈110〉 directions

2.1.2 Point defect thermodynamics

At finite temperature and in thermodynamic equilibrium, a material will contain a certain concentration of defects due to
thermal activation and entropic considerations. The equilibrium defect concentration is given by4–6

C(q) = CSθ
(q)
X exp

(

−∆G
(q)
f /kBT

)

, (1)

whereC(q) is the concentration of a defect with charge stateq, CS is the concentration of possible defect sites,θ
(q)
X is the

multiplicity of internal degrees of freedom of the defect ona lattice site, and∆G(q)
f is the Gibbs free energy of formation

for the defect. We can split the formation free energy into three terms

∆G
(q)
f = ∆E

(q)
f − T∆S

(q)
f + P∆V

(q)
f . (2)

The formation enthalpy,∆E(q)
f , is the dominant term, which we will refer to as the “formation energy.” The formation

entropy,∆S(q)
f , is typically on the order of one or a fewkB , is temperature independent, and varies little between defect

types or different materials. The effect of the entropy termis to nearly uniformly lower the formation free energies by
on the order of 0.1 eV. The last term in Eq. (2), containing theformation volume, describes the pressure dependence of
the formation free energy. The formation volume is typically a small fraction of the atomic volume, so this term can be
neglected except at very high pressures.



Following the formalism of Zhang and Northrup,7 the defect formation energy in a binary compound (specifically AlSb) is
given by8

∆E
(q)
f = E

(q)
tot −

1

2
(nAl + nSb)µ

bulk
AlSb −

1

2
(nAl − nSb)

(

µbulk
Al − µbulk

Sb + ∆µ
)

+ q (EVBM + µe) , (3)

whereE(q)
tot is the total energy of the defect structure (calculated by DFT), ni denotes the number of atoms of typei in the

supercell,µbulk
j is the chemical potential of componentj in its reference state,EVBM denotes the energy of the valence band

maximum, andµe is the chemical potential of the electron reservoir (also referred to as the Fermi level). The parameter∆µ
is defined to describe variations in the chemical environment of the crystal, and is an experimental variable related to the
crystal stoichiometry and external environment. The rangeof ∆µ is constrained by the formation energy of AlSb,∆HAlSb

f ,
with ∆µ = −∆HAlSb

f corresponding to Al-rich conditions (typical growth conditions) and∆µ = +∆HAlSb
f corresponding

to Sb-rich conditions (typical annealing conditions).

The main computational task for determining∆E
(q)
f for each defect and charge state is to accurately calculate aset ofE(q)

tot

values. However, the supercell approximation (periodic boundary conditions) which we employ is susceptible to certain
systematic errors from spurious interactions between defects and their periodic images, especially for charged defects—
so called “finite-size effects”.9, 10 For neutral defects, the leading error is due to elastic interactions. Linear elasticity
theory shows that the strain energy of a point-like inclusion in a homogeneous medium falls off approximately∝ L−3,
whereL is the separation between periodic images.11, 12 For periodic arrays of charge densities (or points), the interaction
can be expressed as a multipole expansion.13 The leading term is the monopole-monopole interaction, which scales as
L−1 and can be determined analytically if the static dielectricconstant of the medium and the Madelung constant of the
Bravais lattice of the supercell are known. The monopole-quadrupole interaction, scaling asL−3, is the next non-zero
term. Higher order terms are usually small and are neglected. In our calculations of defect formation energy, we apply
the monopole-monopole correction manually for each supercell size using the experimental value for the static dielectric
constant (ǫ = 12), and lump together the elastic and monopole-quandrupole corrections by performing a finite-size scaling
with L−3. In this way, we can accurately extrapolate our calculations of formation energy to the infinitely dilute limit, with
very small extrapolation error. To perform the extrapolation, we used four supercell sizes: 32, 64, 128, and 216 atoms. We
found that performing this careful extrapolation to infinite dilution was necessary to obtain reliable and accurate values for
the formation energies.

2.1.3 Self-consistent defect and net carrier concentrations

With the formation energies for all defects under all possible charge states calculated, we can use Eq. (1) to determine
the equilibrium concentration of each defect and the sum of total defects in the material, as a function of temperature
for given conditions of∆µ andµe. Actually, ∆µ is a free parameter related to the experimental conditions,but µe is
partially determined by the concentrations of defects themselves. We can see that Eqs. (1) and (3) are not independent if
we consider the charge neutrality condition. Each charged defect will contributeq free electrons to the crystal. The net
free charge (accounting for the concentrations of the charged defects through Eq. (1)) is accommodated by shiftingµe to
maintain charge neutrality, via

n(µe) =

∫ +∞

CBM
D(E)f(E;µe)dE (4a)

p(µe) =

∫ VBM

−∞

D(E) (1 − f(E;µe)) dE (4b)

p(µe) +ND +
∑

j,q

C
(q)
j;µe

q = n(µe) +NA. (4c)

In Eqs. (4),n andp denote free electron and hole concentration, respectively; D(E) is the density of states (determined
with DFT on a fine energy scale using a densek-point mesh);f(E) is the Fermi function withµe as a parameter;ND and
NA denote the concentration of intentional extrinsic donor (n-type) and acceptor (p-type) dopants, respectively; andCj is
the concentration of defectj from Eq. (1). We have explicitly indicated theµe dependencies in Eqs. (4).

We solve Eqns. (1), (3), and (4c) self-consistently to determineµe and the equilibrium defect concentrations for a given
∆µ andT . After self-consistency is reached, the net carrier concentration can be found by subtracting Eq. (4b) from



Eq. (4a), where a positive number indicates excess holes anda negative number indicates excess electrons. Intentional
extrinsic doping throughNA andND can be used to biasµe toward the VBM (p-type doping) or the CBM (n-type doping),
respectively, but a self-consistent solution of the chargeneutrality condition accounting for any charged defects isstill
required to determine the correct value ofµe. In general, only the defects with the lowest formation energies (within a
range of a few tenths of an electron-volt) will significantlyaffect the total defect and net carrier concentrations.

2.1.4 Defect scattering of charge carriers

To estimate the effect on carrier mobility of a given defect,we calculate the scattering rate due to the presence of the defect
in the crystal (in the dilute limit). Through first order perturbation theory in the Born approximation, Fermi’s Golden Rule
gives the scattering rate,R, due to the potential perturbation,∆V , induced in the perfect crystal by the presence of the
defect:14

R =
2π

~

∣

∣〈ψk’
f |∆V |ψk

i 〉
∣

∣

2
δ (ǫf − ǫi) . (5)

Here,~ is the reduced Planck’s constant,ψi andψf are, respectively, initial and final state wavefunctions corresponding
to momentum statesk andk’, with ǫi andǫf initial and final state (eigen)energies;δ(·) denotes the Dirac delta function.
We determine∆V by taking the difference in real space of the self-consistent local potential in a supercell containing the
defect and the potential in a same-sized supercell of the perfect crystal. In principle, we need to calculate the scattering
rate for every possible (elastic) scattering event among the set ofψ. The mobility can be determined from the scattering
rates through the Boltzmann transport equation, which shows an approximate proportionality between mobility and the
inverse of the scattering rates.14 From a band structure calculation, we can calculate the carrier mobilities fully from first
principles, however, in practice the task is computationally very expensive due to the need to perform a 3D reciprocal space
integral of the scattering rates given in Eq. (5), which requires a very densek-point mesh. An efficient means to calculate
the large number of matrix elements is needed.

However, to obtain the relative effect of different defectson the mobility, we do not need to perform the full quantitative
calculation. Instead, we can estimate the strength of the perturbation potential acting on the wavefunctions. Since the
wavefunctionsψ are orthonormal, the matrix elements in Eq. (5) only have contributions from gradients of∆V . Thus, we
define a relative perturbation potential strength for a given defect as

M =

∫

|∇r(∆V )| dr, (6)

where∇r denotes the gradient operator and| · | indicate taking the absolute value.

2.1.5 Computational details

All DFT total energy calculations were carried out using theViennaab initio Simulation Package (VASP)15–18 and the
projector augmented-wave method (PAW).19, 20 The local density approximation (LDA)21 of Ceperley and Alder22 as pa-
rameterized by Perdew and Zunger23 was used for the exchange-correlation functional. Brillouin zone integrations were
performed with Monkhorst-Pack (MP)24 k-point grids using Gaussian smearing with a width of 0.1 eV. For the 32- and
64-atom supercells,6 × 6 × 6 MP grids were used; for the 128-atom supercells,3 × 3 × 3 MP grids were used (shifted
off Γ); for the 216-atom supercells,4 × 4 × 4 MP grids were used. Pseudopotentials supplied with VASP were used, with
a plane-wave energy cutoff of 300 eV for native AlSb calculations; for calculations involving O or C, a cutoff of 400 eV
was used. Ionic relaxations were continued until all forceswere below 20 meV/̊A. All calculations were performed at the
theoretical equilibrium volume. For the charged defects, the total number of electrons in the calculation was adjustedto
create the charged state, with a compensating homogenous background charge added to maintain overall charge neutrality
in the supercell.

2.2 Experimental Methods

2.2.1 AlSb growth

We grow single crystal boules of AlSb using the Czochralski method in a sealed system. The starting material consists of
pellets of 99.9999% pure Sb melted into a solid ingot in a quartz ampoule, and 99.9999% pure Al. The process of melting
Sb in the quartz ampoule introduces oxygen into the ingot andvisibly etches the quartz leaving bubbles on the surface of
the Sb ingot; we refer to this process as the “Q process.” The Al is melted in an Al2O3 crucible and held for 24 h to outgas



the oxide, before introduction of the Sb ingot. Heating is performed by a graphite susceptor separated from the Al2O3

crucible by 1 atm continuous flow of Ar gas. Optionally, 3–4% of H2 gas may be flowed with the Ar to help reduce oxides.
Nucleation is controlled by a seed crystal, which is pulled from the melt at∼1 cm/h while rotating at 2 rpm. Growth is
performed at 1330 K. Some samples are subjected to post-growth annealing up to 1200 K with Sb overpressure for up to
8 d. We have achieved highly reproducible, large single crystal growths up to∼20 cm3 showing excellent uniformity and
few, if any, macroscopic defects. High purity boules up to 900 g can be grown with greater than 80 wt% utilization of
starting material.

2.2.2 Defect and carrier concentration measurements

X-ray diffraction and Laue measurements are routinely usedto determine crystallinity and orientation of the grown AlSb
boules. High-resolution transmission electron microscopy (HRTEM) studies confirm excellent single crystallinity. Samples
are sawed and polished for analysis and electrical characterization, minimizing air exposure to prevent surface oxidation.
Dynamic secondary ion mass spectrometry (dynamic SIMS) is used on all samples to determine the concentrations of im-
purity atoms. SIMS surveys covering a broad range of the periodic table provide initial screening for detectable impurities
before more careful measurements are performed for the major impurities. Electrical characterization is performed with
room temperature Hall measurements, which reveal net carrier concentration, carrier type, resistivity, and majoritycarrier
mobility for each sample.

3. RESULTS

3.1 Defect structures

We studied the atomic structure and stability of all native defects in AlSb, accounting for charge states from−3 to +3,
and also O and C substitutional impurities on the Sb site. We know that the “Q process,” where the starting Sb material is
melted in a quartz ampoule, introduces O into our material. The hot graphite susceptor is a source of C impurity.

Most of the native defects are stable in at least one charge state. Only Ali,hex and AlSbAl,〈100〉 are not stable at all. These
defects spontaneously lowered their energies by transforming into a different defect. We tested the relative stability of both
C and O impurities for substitution on either the Sb or Al site. Both O and C prefer to substitute on the Sb site, gaining
2–3 eV in stability compared to Al substitution. Thus, O is a single-donor dopant, while C is a single-acceptor dopant. We
note that C, as a group IV element, is a potentially amphoteric dopant, but since it strongly prefers to substitute Sb, it will
generally act as ap-type dopant. The stable charge states of all of the defects we examined are summarized in Table 2.

Table 2. Stable defects in AlSb (refer to Table 1 for notation).

Defect Stable Charge States Defect Stable Charge States
VAl 0,−1,−2,−3 ∗AlAl Al,〈100〉 +2,+1, 0,−1,−2
VSb +1, 0,−1,−2,−3 ∗AlAl Al,〈110〉 +2,+1, 0,−1,−2
AlSb 0,−1,−2,−3 ∗SbSbSb,〈100〉 +2,+1
SbAl +2,+1, 0 ∗SbSbSb,〈110〉 +2,+1, 0,−1,−2
Al i,Al +2,+1, 0,−1,−2 ∗AlSbAl,〈110〉 +1, 0,−1,−2
Al i,Sb +2,+1, 0,−1,−2 AlSbSb,〈100〉 0,−1,−2
Sbi,Al +2,+1, 0,−1,−2 AlSbSb,〈110〉 +2,+1, 0,−1,−2
Sbi,Sb +2 CSb −1, substitutes Sb
Sbi,hex +1, 0,−1,−2 OSb +1, substitutes Sb

∗Metastable

The structures of the vacancies and antisite defects maintain their original site symmetry, except for the Sb vacancies
which exhibit a Jahn-Teller distortion for all but the+1 charge state. Similarly, all of the stable tetrahedral and hexagonal
interstitials maintain their site symmetries, except for the Sbi,Al which also undergo Jahn-Teller distortions. Most of the
split interstitials are unstable or metastable (see Table 2). Only the mixed split interstitials on the Sb site have stable charge
states. Many of the metastable split interstitials can transform into either a tetrahedral interstitial or another split interstitial
with little or no energy barrier. Further details of the split interstitial structures and relative stabilities will bepresented in
a future paper.
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Fig. 1. (Color) Calculated formation energies of all stableor metastable native point defects in AlSb, for∆µ = 0 (stoichio-
metric conditions), as a function of Fermi level throughoutthe band gap. The lowestEf states are highlighted by the
bold line at the bottom, with the corresponding defects in each segment labeled below. Important low-formation energy
lines are extracted in detail in Fig. 2, for the limiting cases of∆µ.

For the impurity atoms, the C substitution on Sb was well-behaved with no significant symmetry breaking, but the O
substitution underwent a large structural change during relaxation. The O atom moved into the center of the triangle
formed by three nearest neighbor Al atoms, forcing the fourth Al neighbor to bond more strongly to its three Sb nearest
neighbors. Strong distortion of the second nearest neighbors accompanied the relaxation. The O substitution retains the
expected+1 charge state and acts as ann-type dopant.

3.2 Defect formation energies

We calculated the formation energies for all of the stable and metastable native point defects in AlSb (listed in Table 2)
following Eq. (3). We re-emphasize that the formation energies depend on the parametersµe and∆µ, which correspond,
respectively, to the doping level (net carrier concentration) in the material and the chemical environment. As described in
Section 2.1.3,µe is not entirely a free parameter, due to the inherent dependence on the charged defect concentrations and
their formation energies. However for high purity materialrelevant for radiation detection application,µe tends to remain
close to mid-gap. The parameter∆µ is free to vary, but the practical values lie at the extreme limits, which correspond
to either Al-rich conditions (∆µ = −∆HAlSb

f ) or Sb-rich conditions (∆µ = +∆HAlSb
f ). Since the AlSb phase diagram

dictates that melt growth will always exhibit slight non-stoichiometry favoring excess Al, growth conditions correspond
to the Al-rich limit. On the other hand, annealing conditions can be varied to control∆µ during post-growth processing;
typically, Sb overpressure (the Sb-rich limit) is employedto minimize sublimation of the high vapor pressure Sb from the
crystal surface and also to promote filling of Sb vacancies that resulted from the Al-rich growth.

The results of the formation energy calculations for the native defects are summarized in Fig. 1, for the case of∆µ = 0.
The data are plotted as a function ofµe (or EFermi) throughout the band gap, where 0 eV corresponds to the valence band
maximum (VBM) and 1.61 eV corresponds to the conduction bandminimum (CBM). In principle,µe can span the energy
range of the band gap, depending on external doping levels, but as explained in the previous paragraph the interesting
values ofµe for our case lie near mid-gap at∼0.8 eV.

We see for each type of defect a set of lines corresponding to different slopes given by the charge state,q, via Eq. (3).
Wherever two lines with differentq cross, for a single defect type, defines a set of ionization energies, where it becomes
energetically favorable for a defect to acquire a new chargestate. If ionization occurs within the band gap, the defects
generally can be classified into two types depending on whether the change in charge is positive or negative at ionization:



positive-type defects tend to be donor states and describe CBM-derived states; negative-type defects tend to be acceptor
states and describe VBM-derived states. The defect classification is important because of the well-known LDA band gap
problem, which significantly underestimates the experimental gap.25, 26 In the case of AlSb, the LDA gap we calculate (at
0 K) is 1.12 eV, while the experimental gap at room temperature is 1.61 eV. With knowledge of the experimental band
gap, we can employ the so-called “scissors operator” to shift the conduction band states upwards in energy to open the
gap.26 However, when applying the scissors operator, we need to be careful about properly shifting the ionization energies,
which were calculated within the LDA gap. A judicious approach consists of rigidly shifting the donor-like ionization
energies with the CBM, while keeping the acceptor-like ionization energies tracking the VBM.27 This is the approach we
have adopted.

In interpreting the results summarized in Fig. 1, which appears quite complicated at first glance, we make note of the fact
that only the very lowest formation energy defects will contribute appreciably to the concentration of defects or carriers
in the material (at equilibrium), sinceEf appears in the exponential in Eq. (1). Thus, in the figure, a bold line is drawn
connecting the lowestEf states throughout the range of EFermi, and the segments are labeled with the particular defect
that is dominant. In the case shown for∆µ = 0, two defects exhibit nearly degenerateEf betweenµe ∼ 0.1–0.5 eV, so
both defects are indicated. For high purity radiation detector material, we find the dominant defect to be V3−

Al . The large
negativeq implies a strong self–hole-doping behavior, and the zero crossing ofEf within the gap indicates a tendency
to pin the Fermi level. While the majority of defects shown inFig. 1 haveEf values too large to significantly contribute
to total defect densities or net carrier densities in the material, many of the higherEf defects comprise deep level traps
that can affect carrier lifetime and reduce theµτ figure of merit for radiation detection devices. Detailed analysis of the
trapping contributions of the defects will appear in a future publication.

Since we are concerned mostly with the lowestEf defects, we can simplify Fig. 1 in consideration of the effect of varying
∆µ, which we show in Fig. 2. The set of dominant defects varies somewhat from the Al-rich limit to the Sb-rich limit,
although V3−Al is always an important defect. Conditions are evident wherethe antisite defects as well as the Ali,Al interstitial
can also play a role.

With all of the formation energies known, we apply Eq. (1) self-consistently as described in Section 2.1.3 to obtain the
total equilibrium defect concentration in the material at various temperatures. We can regard the temperature parameter
as describing annealing temperatures, since as-grown material is expected to be in nonequilibrium and driven toward
equilibrium by heat treatment. The equilibrium concentration represents a lower bound. Figure 3 shows the results, taking
into account all of the stable and metastable native defectsin AlSb, but assuming no extrinsic doping (pure material).

3.3 Mobility

We calculated perturbation potentials∆V for the dominant native defects in AlSb, as well as for C and O impurities.
We then applied Eq. (6) to calculate relative strengths of the perturbations to deduce each defect’s relative contribution
to mobility degradation, normalized by concentration. Theresults of these calculations are shown in Fig. 4. We see that
the O impurity exhibits a scattering strength more than 5× stronger than the other defects, due to the significant structural
rearrangement that occurs around the O defect and the consequent longer-range distortions of the lattice (see Sec. 3.1).
Oxygen acts as a strong mobility killer. In general, the impurity defects show stronger scattering than the native defects.

As mentioned earlier, for ultrapure material at moderate temperatures (e.g., room temperature), the upper limit of mobility
is determined by electron-phonon scattering. Our calculations of this upper limit from first principles is beyond the scope
of the present discussion and will be presented in a future publication. However, previous estimates place the room
temperature upper bounds in the range of up to∼1000 cm2/V-s for both electrons and holes, with holes thought to havea
slightly lower mobility.28

3.4 Experimental results

We are generally able to grow large single-crystal boules ofAlSb with ppb impurity concentrations reproducibly. Impurities
consist of only low-Z elements, with C, O, Si, and S comprising the major constituents. Typical concentrations of these
elements as measured by SIMS are C∼ 5× 1016 cm−3, O< 1× 1015 cm−3 (below detection limit), Si∼ 5× 1015 cm−3,
and S∼ 2 × 1016 cm−3. Mobility greater than 400 cm2/V-s has been achieved. The measured characteristics of a few
representative samples are summarized in Table 3. Generally, we find that the Q process leads to higher resistivity, but also
higher total defect density. Adding 3–4% H2 to the growth atmosphere reduces the total defect density byabout an order of
magnitude, but also leads to lower resistivity material. However, the as-grown mobility of the H2-reduced material tends to
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Fig. 2. Low formation energy defects extracted from Fig. 1 for (a) ∆µ = −0.276 (Al-rich limit) and (b) ∆µ = +0.276

(Sb-rich limit), as a function of Fermi level throughout theband gap. Ticks indicate ionization energies.

be quite high. The mobility of material grown from the Q process can be significantly improved by annealing, for example
at 1200 K for 8 d with Sb overpressure, to values over 100 cm2/V-s. The mobility improvement upon annealing is achieved
with little change in either net carrier density or total defect density. The net carrier density tends to be much lower for Q
process material compared to H2-reduced material by over an order of magnitude.

Table 3. Measured properties of AlSb samples from Hall and dynamic SIMS.

Resistivity Mobility Net Carrier Density Total Defect Density
Sample Type (Ω-cm) (cm2/V-s) (cm−3) (cm−3)
Q process as-grown n-type 1.5 × 104 18 2.3 × 1013 3.1 × 1016

Q process annealed n-type 3.5 × 103 130 1.4 × 1013 ≈ 4 × 1016

H2-reduced #1 p-type 9.7 × 101 350 2.4 × 1014 4.0 × 1015

H2-reduced #2 p-type 1.8 × 101 450 8.9 × 1014 —
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4. DISCUSSION

The results we have obtained build a clear understanding of the role of defects – both native and impurity – in the variability
of material performance of AlSb for radiation detection application, as well as provide direct guidance toward optimiza-
tion. The equilibrium native defect concentrations calculated provide a lower bound for total defect densities at different
annealing temperatures. While kinetics need to be considered to plan an optimal annealing time, the results here give a
maximum temperature allowed to achieve a desired defect level (in the long time limit). Insight into the thermodynamic
effects of the annealing environment is revealed as well. Ingeneral, these types of calculations are helpful for screening
purposes, since they provide a gating criterion (minimum practical achievable defect density) for an experimental effort.
The results presented here demonstrate the very good predictive power of our theory, illustrated by the agreement with
experimental measurements of defect concentrations shownin Fig. 3. The bold circle in the upper left of Fig. 3 marks
a measured value of total defect concentration of high quality as-grown material (grown at 1330 K), in close agreement
with the calculated value at 1300 K under Al-rich conditions. After annealing at 1200 K for 8 d with Sb overpressure,
this sample showed a reduction in total defect concentration, indicated by the bold star at the upper right of Fig. 3. Again,
the agreement is quite good, matching closely with the calculated value at 1150 K for Sb-rich conditions. The result also
indicates that the annealing step was successful in drivingthe material nearly to equilibrium.

But not all defects are alike. Neutral defects contribute tothe total defect concentration, but do not contribute to netcarrier
concentration. Also, positively and negatively charged defects contribute oppositely to carrier concentration, compensating
each other. Furthermore, if we examine the energy levels of different defects, we expect shallow defects to be easily ionized



and contribute fully to carrier density, however deep levels may not be ionized. (We are further interested in deep levels
for their trapping characteristics, as mentioned earlier,but this aspect is beyond the current discussion.) In the case of high
purity AlSb, we are particularly interested in the interplay between V−3

Al and O+1
Sb . The V−3

Al is a strongp-type self-dopant,
while the O+1

Sb is an extrinsic (impurity)n-type dopant. We know from the results in Fig. 4 that O is a strong mobility killer.
Thus, it is possible to drastically reduce net carrier concentration by the incorporation of O and increase resistivity, but this
greatly reduces mobility. We notice this effect in the experimental data highlighted in Table 3. The H2-reduced growths
eliminate much of the O impurity, leading to the highest mobilities even without annealing; however, the carrier densities
are one to two orders of magnitude higher compared to the Q process growths and the material exhibits correspondingly
low resistivity. Also, the H2-reduced material isp-type, since the O does not compensate the self-doping from the V−3

Al
(as well as anyp-type doping from C impurities). Conversely, Q process growths producen-type material due to high
excess O content, along with correspondingly low mobilities. The compensating effect is evident in the much higher total
defect densities coupled with much lower net carrier densities. Furthermore, annealing improves mobility considerably.
The precise details of this process require further study, but a likely contribution comes from the preference of O to form
stable oxides with Al and Sb rather than remain as a substitutional defect. Also, the usual annealing process takes the
as-grown material from the Al-rich limit to the Sb-rich limit, increasing somewhat the equilibrium V−3

Al concentration. We
have calculated the O phase stability diagram in AlSb to determine limits for O substitutional incorporation, and the results
(1×1014 – 1×1016 cm−3 range) are consistent both with the doping levels required for the explanations given here and
also the measured limits of O impurity levels. Additionally, experiments have been performed to intentionally dope AlSb
highly with O to give high resistivity material. The approach succeeds, but at the expense of obtaining negligible mobility,
as we expect. In fact, one needs to be careful about using resistivity to characterize material, since it is only loosely related
to mobility (the more pertinent property), as demonstratedin this particular example of a compensating dopant that is also
a mobility killer.

Finally, concerning the compensation doping by O, our calculations show that much higher levels of O are required to
make the materialn-type under Sb-rich conditions compared to Al-rich conditions. The reason is the lower concentration
of VAl under Al-rich conditions, which reduces the self–p-doping and Fermi level-pinning. Thus, it might be possibleto
lower the net carrier density and increase resistivity, with a lower concentration of O, yielding higher mobility. We are
investigating this idea further.

5. CONCLUSIONS

We have used first principles calculations of defects in AlSb, coupled with experimental growth efforts, to gain insightinto
the microscopic mechanisms of material degradation. The results of our study are leading to improved material through
optimized growth and post-growth processes. We have demonstrated the quantitative predictive ability of our calculations
of defect and carrier densities. Through scattering rate calculations, we have shown that O is a particularly strong mobility
killer and its incorporation into the crystal should be minimized. This result leads to better understanding of seemingly
conflicting experimental data, which sometimes show variations in mobility and carrier concentration that do not track
each other or the resistivity. There is a fundamental tradeoff between the carrier compensation effect of O impurities and
the strong mobility degradation associated with O.

In addition to continuing to explore the effects of various defects and phonons on optimizing AlSb material, we are expand-
ing our efforts to other materials of interest as well, with the goal of working toward the ability to perform computational
materials discovery experiments. We are developing fully first principles approaches to quantitatively predict the properties
of materials and alloys (e.g., mobility, lifetime, and defect levels) that are relevant to a specific application, such as gamma
radiation detection, and use that capability to find optimalmaterials as well as to guide experimental efforts at growthand
process optimization.
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19. P. E. Blöchl, “Projector augmented-wave method,”Phys. Rev. B 50, pp. 17953–17979, 1994.
20. G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,”Phys. Rev.

B 59, pp. 1758–1775, 1999.
21. L. Hedin and B. I. Lundqvist, “Explicit local exchange-correlation potentials,”J. Phys. C 4, pp. 2064–2083, 1971.
22. D. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,”Phys. Rev. Lett. 45, pp. 566–569,

1980.
23. J. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron sys-

tems,”Phys. Rev. B 23, pp. 5048–5079, 1981.
24. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,”Phys. Rev. B 13, pp. 5188–5192,

1976.
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