16,227 research outputs found

    Comparative planetology: Significance for terrestrial geology

    Get PDF
    The crustal evolution of the terrestrial planets increase in complexity and duration with increasing size and mass of the planet. The lunar and mercurian surfaces are largely the result of intense, post-differentiation impact bombardment and subsequent volcanic filling of major impact basins. Mars, being larger, has evolved further: crustal uplifts, rifting, and shield volcanoes have begun to modify its largely Moon-like surface. The Earth is the large end-number of this sequence, where modern plate tectonic processes have erased the earlier lunar and martian type of surfaces. Fundamental problems of the origin of terrestrial continents, ocean basins, and plate tectonics are now addressed within the context of the evolutionary pattern of the terrestrial planets

    Seasonal dynamics of soil respiration and nitrogen mineralization in chronically warmed and fertilized soils

    Get PDF
    Although numerous studies have examined the individual effects of increased temperatures and N deposition on soil biogeochemical cycling, few have considered how these disturbances interact to impact soil C and N dynamics. Likewise, many have not assessed season-specific responses to warming and N inputs despite seasonal variability in soil processes. We studied interactions among season, warming, and N additions on soil respiration and N mineralization at the Soil Warming × Nitrogen Addition Study at the Harvard Forest. Of particular interest were wintertime fluxes of C and N typically excluded from investigations of soils and global change. Soils were warmed to 5°C above ambient, and N was applied at a rate of 5 g m−2 y−1. Soil respiration and N mineralization were sampled over two years between 2007 and 2009 and showed strong seasonal patterns that mirrored changes in soil temperature. Winter fluxes of C and N contributed between 2 and 17% to the total annual flux. Net N mineralization increased in response to the experimental manipulations across all seasons, and was 8% higher in fertilized plots and 83% higher in warmed plots over the duration of the study. Soil respiration showed a more season-specific response. Nitrogen additions enhanced soil respiration by 14%, but this increase was significant only in summer and fall. Likewise, warming increased soil respiration by 44% over the whole study period, but the effect of warming was most pronounced in spring and fall. The only interaction between warming × N additions took place in autumn, when N availability likely diminished the positive effect of warming on soil respiration. Our results suggest that winter measurements of C and N are necessary to accurately describe winter biogeochemical processes. In addition, season-specific responses to the experimental treatments suggest that some components of the belowground community may be more susceptible to warming and N additions than others. Seasonal changes in the abiotic environment may have also interacted with the experimental manipulations to evoke biogeochemical responses at certain times of year

    Elasticity of Stiff Polymer Networks

    Full text link
    We study the elasticity of a two-dimensional random network of rigid rods (``Mikado model''). The essential features incorporated into the model are the anisotropic elasticity of the rods and the random geometry of the network. We show that there are three distinct scaling regimes, characterized by two distinct length scales on the elastic backbone. In addition to a critical rigidiy percolation region and a homogeneously elastic regime we find a novel intermediate scaling regime, where elasticity is dominated by bending deformations.Comment: 4 pages, 4 figure

    Fundamental and harmonic emission in interplanetary type 2 radio bursts

    Get PDF
    Three interplanetary type II radio bursts which show two prominent and long duration bands in their dynamic spectra were analyzed in detail and compared to similar bands in meter wavelength type II events. These bands, which differ by a factor of about two in frequency, were interpreted in terms of fundamental and harmonic emission. The fundamental component has a greater average intensity than the harmonic, due largely to short intense brightenings. The fundamental spectral profile is more narrow than that of the harmonic, with harmonic band typically exhibiting a larger bandwidth to frequency ratio than the fundamental by a factor of two. The fundamental has a larger source size than the harmonic, 160 degrees versus 110 degrees, on average, as viewed from the Sun. Two of the events have source positions which correlate well with the associated flare positions

    Proposed satellite laser ranging and very long baseline interferometry sites for crustal dynamics investigations

    Get PDF
    Recommendations are presented for a global network of 125 sites for geodetic measurements by satellite laser ranging and very long baseline interferometry. The sites were proposed on the basis of existing facilities and scientific value for investigation of crustal dynamics as related to earthquake hazards. Tectonic problems are discussed for North America peripheral regions and for the world. The sites are presented in tables and maps, with bibliographic references

    Probing the Active Massive Black Hole Candidate in the Center of NGC 404 with VLBI

    Get PDF
    Recently Nyland et al. (2012) argued that the radio emission observed in the center of the dwarf galaxy NGC 404 originates in a low-luminosity active galactic nucleus (LLAGN) powered by a massive black hole (M∼<106M\sim<10^6 M⊙_{\odot}). High-resolution radio detections of MBHs are rare. Here we present sensitive, contemporaneous Chandra X-ray, and very long baseline interferometry (VLBI) radio observations with the European VLBI Network (EVN). The source is detected in the X-rays, and shows no long-term variability. If the hard X-ray source is powered by accretion, the apparent low accretion efficiency would be consistent with a black hole in the hard state. Hard state black holes are known to show radio emission compact on the milliarcsecond scales. However, the central region of NGC 404 is resolved out on 10 milliarcsecond (0.15-1.5 pc) scales. Our VLBI non-detection of a compact, partially self-absorbed radio core in NGC 404 implies that either the black hole mass is smaller than 3−2+5×1053^{+5}_{-2}\times10^5 M⊙_{\odot}, or the source does not follow the fundamental plane of black hole activity relation. An alternative explanation is that the central black hole is not in the hard state. The radio emission observed on arcsecond (tens of pc) scales may originate in nuclear star formation or extended emission due to AGN activity, although the latter would not be typical considering the structural properties of low-ionization nuclear emission-line region galaxies (LINERs) with confirmed nuclear activity.Comment: Accepted for publication in the Astrophysical Journal. 7 pages, 2 figures, 1 tabl

    Plant community structure mediates potential methane production and potential iron reduction in wetland mesocosms.

    Get PDF
    Abstract Wetlands are the largest natural source of methane to the atmosphere, but factors controlling methane emissions from wetlands are a major source of uncertainty in greenhouse gas budgets and projections of future climate change. We conducted a controlled outdoor mesocosm experiment to assess the effects of plant community structure (functional group richness and composition) on potential methane production and potential iron reduction in freshwater emergent marshes. Four plant functional groups (facultative annuals, obligate annuals, reeds, and tussocks) were arranged in a full-factorial design and additional mesocosms were assigned as no-plant controls. Soil samples from the top 10 cm were collected three times during the growing season to determine potential methane production and potential iron reduction (in unamended soils and in soils amended with 200 mM formate). These data were compared to soil organic matter, soil pH, and previously published data on above and belowground plant biomass. We found that functional group richness was less important than the presence of specific functional groups (reeds or tussocks) in mediating potential iron reduction. In our mesocosms, where oxidized iron was abundant and electron donors were limiting, iron reducing bacteria outcompeted methanogens, keeping methane production barely detectable in unamended lab incubations. When the possibility of re-oxidizing iron was eliminated via anaerobic incubations and the electron donor limitation was removed by adding formate, potential methane production increased and followed the same patterns as potential iron reduction. Our findings suggest that in the absence of abundant oxidized iron and/or the presence of abundant electron donors, wetlands dominated by either reeds or tussocks may have increased methane production compared to wetlands dominated by annuals. Depending on functional traits such as plant transport and rhizospheric oxygenation capacities, this could potentially lead to increased methane emissions in some wetlands. Additional research examining the role these plant functional groups play in other aspects of methane dynamics will be useful given the importance of methane as a greenhouse gas

    Entropic forces generated by grafted semiflexible polymers

    Get PDF
    The entropic force exerted by the Brownian fluctuations of a grafted semiflexible polymer upon a rigid smooth wall are calculated both analytically and by Monte Carlo simulations. Such forces are thought to play an important role for several cellular phenomena, in particular, the physics of actin-polymerization-driven cell motility and movement of bacteria like Listeria. In the stiff limit, where the persistence length of the polymer is larger than its contour length, we find that the entropic force shows scaling behavior. We identify the characteristic length scales and the explicit form of the scaling functions. In certain asymptotic regimes we give simple analytical expressions which describe the full results to a very high numerical accuracy. Depending on the constraints imposed on the transverse fluctuations of the filament there are characteristic differences in the functional form of the entropic forces; in a two-dimensional geometry the entropic force exhibits a marked peak.Comment: 21 pages, 18 figures, minor misprints correcte
    • …
    corecore