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Abstract. Wetlands are the largest natural source of methane to the atmosphere, but factors controlling

methane emissions from wetlands are a major source of uncertainty in greenhouse gas budgets and

projections of future climate change. We conducted a controlled outdoor mesocosm experiment to assess

the effects of plant community structure (functional group richness and composition) on potential methane

production and potential iron reduction in freshwater emergent marshes. Four plant functional groups

(facultative annuals, obligate annuals, reeds, and tussocks) were arranged in a full-factorial design and

additional mesocosms were assigned as no-plant controls. Soil samples from the top 10 cm were collected

three times during the growing season to determine potential methane production and potential iron

reduction (in unamended soils and in soils amended with 200 mM formate). These data were compared to

soil organic matter, soil pH, and previously published data on above and belowground plant biomass. We

found that functional group richness was less important than the presence of specific functional groups

(reeds or tussocks) in mediating potential iron reduction. In our mesocosms, where oxidized iron was

abundant and electron donors were limiting, iron reducing bacteria outcompeted methanogens, keeping

methane production barely detectable in unamended lab incubations. When the possibility of re-oxidizing

iron was eliminated via anaerobic incubations and the electron donor limitation was removed by adding

formate, potential methane production increased and followed the same patterns as potential iron

reduction. Our findings suggest that in the absence of abundant oxidized iron and/or the presence of

abundant electron donors, wetlands dominated by either reeds or tussocks may have increased methane

production compared to wetlands dominated by annuals. Depending on functional traits such as plant

transport and rhizospheric oxygenation capacities, this could potentially lead to increased methane

emissions in some wetlands. Additional research examining the role these plant functional groups play in

other aspects of methane dynamics will be useful given the importance of methane as a greenhouse gas.

Key words: freshwater emergent marsh; functional group composition; functional group richness; iron reduction;

methanogenesis.
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INTRODUCTION

The structure and function of ecosystems are
being greatly altered by human activities (Vitou-
sek et al. 1997), and the resulting loss of species
worldwide has led to increasing concern for the
consequences of reduced biodiversity across a
wide range of ecosystems (Naeem et al. 1994,
Chapin et al. 2000, Loreau et al. 2001, Zedler et al.
2001, Hooper et al. 2005, Lovett et al. 2009, Geyer
et al. 2011). Freshwater wetland ecosystems
provide a number of valuable services, including
biodiversity support, water quality maintenance
and improvement, flood control, and carbon
storage (Zedler and Kercher 2005). While there
are a number of studies documenting changes in
wetland biodiversity as a consequence of human
activities (Findlay and Houlahan 1997, Findlay
and Bourdages 2000, Houlahan and Findlay
2004, Rosas et al. 2006, Schooler et al. 2006),
there have been fewer studies on links between
changes in biodiversity and functions that sup-
port wetland services (Engelhardt and Ritchie
2001, Mahaney et al. 2006, Bouchard et al. 2007,
Schultz et al. 2011).

Alterations in plant community structure can
affect ecosystem functioning because plants
differ in their rates and mechanisms of resource
utilization and in how they influence other plants
and their physical environment (Chapin et al.
2000). Growing research indicates that restored
and created wetlands do not exhibit or maintain
the same functional or physical characteristics,
including plant biomass, plant species richness,
and biogeochemical functions, as natural wet-
lands (Zedler et al. 2001, Hossler et al. 2011,
Moreno-Mateos et al. 2012). Thus, it is especially
important that we understand the role that plant
community structure plays in mediating wetland
properties such as methane production and
oxidation, organic matter dynamics, and plant
biomass (Joabsson et al. 1999, Engelhardt and
Richie 2001, Vann and Megonigal 2003, Bouchard
et al. 2007).

Of the long-lived greenhouse gases, methane is
second only to CO2 in radiative forcing (Forster
et al. 2007); because methane is such a potent
greenhouse gas, understanding factors that affect
methane dynamics is especially important. Wet-
lands are the single largest natural source of
methane to the atmosphere, contributing an

estimated 100–231 Tg CH4 yr�1 (Christensen et
al. 2003, Shindell 2004, Denman et al. 2007).
Freshwater wetlands may account for 20–39% of
the total global methane emissions and as much
as 90% of natural emissions (Denman et al. 2007).
Previous studies have measured highly variable
rates of methane production in wetland sedi-
ments (Schimel 1995, Whalen and Reeburgh
2000, Krüger et al. 2001, Freeman et al. 2002,
Megonigal and Schlesinger 2002, Keller et al.
2005, Welsch and Yavitt 2007, Sutton-Grier and
Megonigal 2011) but the controlling factors
contributing to this variability are still not well
understood. Despite the significance of freshwa-
ter wetlands as a source of methane, this
continued uncertainty about controls on sedi-
ment methane cycling stresses the need for
further research of belowground processes. This
task is particularly complex in vegetated wet-
lands due to the number of feedbacks between
plants and microbes, the number of transport
pathways plants provide, and competition with
other microbes for electron donors (see Laan-
broek 2010 for a review).

Methane production is performed by methan-
ogenic archaea in the anaerobic zones of wetland
sediments, but methanogens face competition for
methanogenic substrates (i.e., organic acids for
acetoclastic methanogens and hydrogen for
hydrogenotrophic methanogens) from bacteria
that can utilize more energetically favorable
electron acceptors such as sulfate and oxidized
iron. Competition with sulfate reducers is more
likely to dominate in marine or other sulfate rich
wetlands, while in freshwater wetlands compe-
tition with iron reducers is more likely (Laan-
broek 2010). This competition has been shown to
suppress methane production and reduce meth-
ane emissions (Roden and Wetzel 1996, van der
Nat and Middelburg 1998, Frenzel et al. 1999,
Neubauer et al. 2005). Plants contribute to these
processes by providing carbon substrates (elec-
tron donors) to methanogens and their compet-
itors through root exudation and root turnover
and by creating an oxygenated rhizosphere
where reduced iron can be re-oxidized and
methane can be consumed (Laanbroek 2010).

While there have been studies examining the
effects of specific plant species on methane
dynamics (Chanton et al. 1993, Calhoun and
King 1997, Ström et al. 2005, Smialek et al. 2006,
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Welsch and Yavitt 2007), including studies
looking at suppression by iron reducers (Roden
and Wetzel 1996, Frenzel et al. 1999, Neubauer et
al. 2005, Sutton-Grier and Megonigal 2011), there
has been very little work looking at the effects of
plant community structure on methane or iron
cycling. As part of a larger project, our overall
objective was to explore the interactions between
plant community structure and belowground
processes in the context of experimental fresh-
water wetland mesocosms. Here we focus spe-
cifically on the effects of plant community
structure (functional group richness and compo-
sition) on potential methane production and
potential iron reduction. We chose to utilize
functional groups (facultative annuals, obligate
annuals, reeds, and tussocks) rather than indi-
vidual species in order to account for redundan-
cy among species with similar functional traits.

Previous findings suggest that belowground
biomass can increase with functional group
richness (the number of functional groups pre-
sent) as plants from different functional groups
penetrate different niches (Bouchard et al. 2007).
Increases in belowground biomass should lead to
greater root turnover and root exudates, which
contribute to the pool of available carbon
substrates for methanogens and iron reducing
bacteria. With that in mind, we chose functional
groups that differ in their belowground biomass
and morphology: facultative and obligate annu-
als tend to have shallow roots and lower root
biomass than the reeds and tussocks, which
typically have increased root biomass, penetrate
more deeply and exhibit lateral spreading (Bou-
tin and Keddy 1993). We hypothesized that
potential methane production and potential iron
reduction would be positively correlated with (1)
increases in belowground plant biomass, (2)
increases in plant functional group richness,
and (3) the presence of reeds and/or tussocks.

METHODS

Site description and experimental design
We tested our hypotheses using outdoor

experimental wetland mesocosms that allowed
us to manipulate the number and composition of
functional groups present in the plant communi-
ty. The mesocosms (130 cm length3 86 cm width
3 40 cm depth) were located at the Waterman

Agricultural and Natural Resources Laboratory
on the main campus of Ohio State University. All
mesocosms were filled with low organic matter
soil (50/50 silt and sand mix, 3% C, 0.03% N, 2.6%
Fe) to minimize the effects of existing organic
matter stocks on carbon and nutrient cycling.
Four plant functional groups (facultative annu-
als, obligate annuals, reeds, and tussocks) were
chosen to represent a range of plants known to
associate closely in freshwater emergent marshes,
and were defined based on physiological, mor-
phological, and life history traits (Boutin and
Keddy 1993). The functional groups were ar-
ranged in a full-factorial design, giving 16 levels
of functional group composition (one with no
plants, four with single functional groups, six
with two functional groups, four with three
functional groups, and one with all four func-
tional groups; FGC); each level was randomly
assigned to five mesocosms. Throughout the
paper we refer to these by capital letter designa-
tions: C (no-plant control), F (facultative annu-
als), O (obligate annuals), R (reeds), and T
(tussocks). When more than one functional group
is present, they are designated by the combina-
tion of letters. For example, FT indicates a
community with both facultative annuals and
tussocks. These treatments also gave us the
ability to look at five levels (0–4) of functional
group richness (number of functional groups
present; FGR) and the presence/absence of each
functional group (denoted by italicized capital
letters). Plantings (18–20 plants per mesocosm)
occurred in June 2006, with each functional
group represented by four species (Appendix:
Table A1). A drip irrigation system was installed
to keep the mesocosms flooded during the
growing season and the mesocosms were irrigat-
ed every three days to keep the water level at 10
cm above the soil surface. Further details on the
site and experimental design are reported in
Schultz et al. (2012).

Plant sampling and analysis
Details on plant sampling are reported in

Schultz et al. (2012). Briefly, destructive sampling
for root and shoot biomass was conducted at
peak biomass (1 September 2008) from one half
of each mesocosm. All stems were clipped down
to the soil surface and plants were sorted for each
plot by species and placed in paper bags and
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dried. Immediately after aboveground samples
were collected, two soil cores (7 cm diameter, 10
cm depth) were collected from each mesocosm
and bulked for analysis of root biomass. Soil
cores for root biomass were washed with a Delta-
T Root Washer (500 lm mesh filter; Delta-T
Devices Ltd, Cambridge, UK) followed by a 1
mm sieve and stored at�108C until analysis. Live
roots were then manually sorted from detritus.
Root and shoot samples were oven dried for 72
hours at 558C to constant mass. Subsamples of
dried roots and shoots were then combusted in a
muffle oven at 4508C for eight hours to determine
the ash-free dry weight.

Soil sampling and analysis
Soil samples were collected in June, August,

and November 2008. Because these were young
systems (only two years old) we expected to see
stronger effects of plants close to the soil surface
(top 10 cm) where most of the root growth was
occurring (root biomass increased by 219% in the
top 10 cm from 2007 to 2008 but only by 33%
below 10 cm; Schultz 2010). Therefore, because
logistical constraints limited our ability to look at
multiple depths, we chose to use the top 10 cm of
soil. It should be noted however that due to this
approach we may have missed treatment effects
of root distribution on potential methane pro-
duction and potential iron reduction. Surface
water was temporarily drained and three soil
cores (2 cm diameter) were collected from each
mesocosm and bulked for analysis. Soil samples
were immediately double bagged in re-sealable
plastic zipper bags (to minimize oxygen infiltra-
tion), homogenized, and shipped overnight to
the University of New Hampshire, where they
were stored at 48C until analysis.

Subsamples were used to estimate potential
methane production and potential iron reduction
and to measure soil moisture, soil organic matter
(SOM), and pH. Soil moisture was determined by
drying subsamples at 1058C to constant mass.
The dried soils were then combusted in a muffle
oven at 4508C for 6 hours to determine organic
matter by loss-on-ignition. The compact nature of
the soils and the high concentration of fine roots
made it difficult to remove all roots from the
samples; as a consequence the SOM results may
include some fine root biomass. Soil pH was
determined on 1:2 soil:deionized water slurries.

Potential methane production and
potential iron reduction

Early trial incubations in unamended soils
(only water added) yielded very low (often
undetectable) rates of potential methane produc-
tion (PMP) and so we chose to test a variety of
carbon substrate amendments utilized by both
methanogens and iron reducers (acetate, formate,
and an H2-CO2 gas mix). In these test runs,
potential methane production and potential iron
reduction did not differ significantly between
acetate amended soils and unamended soils, nor
between formate amended soils and H2-CO2

amended soils (S. E. Andrews, unpublished data).
Therefore, due to time and space constraints, we
chose to use formate as the carbon substrate
amendment for all subsequent incubations. For
potential methane production, soils (1 g wet
weight 6 0.1 g) were loaded into 20 mL clear
serum vials inside an anaerobic N2 filled cham-
ber. Vials were capped with red rubber septa and
sealed prior to removal from the chamber. Vials
were then flushed with ultrapure N2 for two
minutes to ensure anaerobic conditions and were
incubated overnight at 258C. The following day, 2
mL of either deionized water (unamended) or
200 mM formate (amended) were injected
through the septa, and vials were vortexed for
30 seconds and incubated for 10 days at 258C.
Vials were flushed with N2 gas for two minutes
twice within the first three days of the incubation
to ensure that anaerobic conditions were being
maintained. Four headspace samples were taken
starting at 72 hours after the last flush (day six):
vials were vortexed for 30 seconds before the
entire headspace was evacuated into 60 mL
syringes (used to create a strong enough vacuum
to pull the bulk of the headspace from the vials).
Immediately after sampling, vials were re-
flushed with ultrapure N2 for two minutes to
maintain pressure and anaerobic conditions.
Headspace samples were stored in evacuated 20
mL clear serum vials at room temperature until
the contents could be analyzed for methane
concentration (within 24 hours of headspace
sample collection). Triplicate blanks (3 mL
deionized water) were treated and sampled
identically to the soil samples. Methane samples
were analyzed using a gas chromatograph
equipped with a flame ionization detector and
a 1 mL sample loop (Shimadzu GC-8A, Shimad-
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zu, Kyoto, Japan). The carrier gas was N2 with a
flow of 30 mL/min. Standardization was done
using a calibrated breathing air cylinder based on
NOAA ESRL standards. Linear regression anal-
ysis (PROC REG, SAS 9.3) was used to calculate
the rate of methane produced over time. Rates
were accepted for lines with r2 � 0.75 and P �
0.05 (95% of rates met these criteria); rates that
did not meet these criteria were not accepted and
were treated as missing data.

Incubations for potential iron reduction (PIR)
were conducted on soils collected in August and
November of 2008. To determine potential iron
reduction, Fe(II) concentrations were measured
twice: once on unamended soil samples that were
destructively sampled prior to the incubation
(treated exactly as those for potential methane
production except all vials received only 2 mL of
water, Fe(II) was determined immediately after
vials were vortexed on the first day, and soils
were subsequently discarded) and once on the
soil samples that were used to measure potential
methane production (both the amended and
unamended soils were destructively sampled
after the last methane headspace sample was
taken). Potential iron reduction rates were then
determined by subtracting the initial Fe(II)
concentration from the final Fe(II) concentration
and dividing by the length of the incubation (the
Fe(II) determined on unamended soils destruc-
tively sampled prior to incubation was used as
the initial Fe(II) concentration for both the
amended and unamended incubated soils).
While we were unable to measure Fe(II) at more
than two sampling times, others have found
linear increases in iron reduction within the first
three to twenty days of incubation (Roden and
Wetzel 1996, Frenzel et al. 1999, and Roden and
Wetzel 2003). We cannot rule out the possibility
that our rates might not be linear but our rates do
reflect the total accumulated iron reduced during
our incubation and thus do not limit our ability
to make comparisons across the treatments.

The method used to determine reduced iron
content was modified from methods used by
others (Sørensen 1982, Lovley and Phillips 1987,
Achtnich et al. 1995) so that samples could be
analyzed using a microplate reader. Briefly, vials
were shaken and 0.3 mL of slurry was incubated
with 5 mL of 0.5 M HCl for one hour at room
temperature to dissolve poorly crystalline iron.

After incubation, the slurry-HCl mix was shaken
and 0.1 mL was added to 1 mL of Ferrozine
reagent (1 g Ferrozine in 1000 mL of 50 mM
HEPES buffer) in 2 mL amber microcentrifuge
tubes. Tubes were centrifuged at 10,000 g for two
minutes (Microfuge Centrifuge, Beckman Coul-
ter, Brea, California, USA) and then samples were
pipetted into microplates (clear, flat-bottomed, 96
well, 350 ll well volume). Absorbance at 562 nm
was measured immediately on a Synergy HT
microplate reader (BioTek Instruments, Winoos-
ki, Vermont, USA) using Gen5 Data Analysis
software (2005). Triplicate blanks (deionized
water) were treated identically to the soil
samples. Initial and final Fe(II) concentrations
were determined using standards made from
ferrous ammonium sulfate.

Statistical analyses
To test for the effects of functional group

richness, functional group composition, and
presence/absence of functional groups, separate
linear mixed effects models (LME) were done
with either potential methane production or
potential iron reduction as the dependent vari-
able (PROC MIXED, SAS 9.3). All data were log
transformed to adjust for heteroscedasticity and
non-normality. We used LME for several reasons.
First, LME are less sensitive to missing observa-
tions than ANOVA (SAS Institute 2008) and the
5% of our potential methane production rates
that did not satisfy our criteria for acceptance (r2

� 0.75, P � 0.05) were treated as missing
observations. Second, our design includes a
repeated measure (month) on each mesocosm (a
random effect), which gives rise to correlated
errors. By using LME we could model an
appropriate covariance structure to account for
correlated errors (Littell et al. 2006). Finally, we
also have a split-plot factor (amended versus
unamended) that gives rise to multiple sources of
random error. In SAS, ANOVAs (proc GLM)
incorrectly compute standard errors for interac-
tions in split-plot experiments and cannot com-
plete a correct analysis; therefore LME are
recommended (Littell et al. 2006).

For all models a factorial analysis of the fixed
effects was performed, where the whole-plot
factor was functional group richness (0–4),
functional group composition (16 levels), or
presence/absence of functional groups (factorial
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of F, O, R, and T; coded as present or absent), the
repeated measure was month (June, August, and
November for methane and August and Novem-
ber for iron), the split-plot factor was substrate
(amended or unamended), and mesocosm was
specified as a random effect (nested in the whole-
plot factor). For the presence/absence models the
no-plant controls were removed from analysis
and only two-way interactions amongst F, O, R,
and T were included. Including the higher-order
interactions in the models resulted in parameter
instability that in some cases led to least square
means estimates outside of the data range. While
there were a few statistically significant three-
way interactions in earlier models, these were not
biologically meaningful nor did they explain
anything that could not already be seen from
the two-way interactions. Similar presence/ab-
sence models were run with root biomass or
shoot biomass as the dependent variable (see
Schultz et al. 2012 for the effects of functional
group richness and composition on plant bio-
mass) but neither substrate nor month was
included in those models as they were not
applicable. Models were also run using pH or
soil organic matter (SOM) as dependent vari-
ables; substrate was not included in these models
as pH and SOM were measured prior to
amendment.

Models were left in their full form because we
were more interested in exploring significant
effects than parsing down to predictive models at
this stage. Where main effects were significant,
differences in least squares means were assessed
using Tukey’s test of multiple comparisons. For
significant interactions, differences in means of
one effect were examined while holding the other
effect(s) constant. Relationships amongst re-
sponse variables (potential methane production,
potential iron reduction, root biomass, shoot
biomass, soil pH, and SOM) were analyzed
separately by Pearson correlations for all combi-
nations of response variables (proc CORR, SAS
9.3).

RESULTS

Potential methane production and
potential iron reduction

Potential methane production and potential
iron reduction were significantly higher in

amended soils than unamended for all sampling
months (Fig. 1). For potential methane produc-
tion there was a significant interaction between
month and substrate (Table 1): for unamended
soils there were no significant differences in
potential methane production amongst months
(,0.07 ng CH4-C�g�1�dry soil�h�1), but soils
amended with formate had significantly higher
potential methane production in June (0.43 ng
CH4-C�g�1 dry soil�h�1) than in August or
November (0.29 and 0.25 ng CH4-C�g�1 dry
soil�h�1, respectively; Fig. 1A). There was no
month 3 substrate interaction for potential iron
reduction (Table 1): regardless of substrate
addition, potential iron reduction was signifi-
cantly higher in August than in November (13.16
and 8.17 lg Fe(II)�g�1 dry soil�h�1, respectively;
note that data in Fig. 1B is shown by month and
substrate so that differences can be more easily
visualized).

There were no significant interactions between
month and functional group richness or month
and functional group composition for either
potential methane production or potential iron
reduction (data not shown). The lack of signifi-
cant interactions indicates that even though rates
decreased with month (Fig. 1), the patterns
remained the same (data not shown). Therefore,
for the remaining results, data from all sampling
months were combined.

Functional group richness and composition
Potential methane production in unamended

soils did not vary with functional group richness,
however, potential methane production in
amended soils was lowest (0.08 ng CH4-C�g�1
dry soil�h�1) in the no-plant controls and highest
(0.62 ng CH4-C�g�1 dry soil�h�1) when all four
functional groups were present (Fig. 2A; FGR 3

substrate interaction in Table 1). For unamended
and amended soils potential iron reduction was
also lowest (2.35 and 6.74 lg Fe(II)�g�1 dry
soil�h�1, respectively) in the no-plant controls
and highest (7.74 and 22.00 lg Fe(II)�g�1 dry
soil�h�1, respectively) when all four functional
groups were present (Fig. 2C). While functional
group richness was a significant effect for both
potential methane production (amended only)
and potential iron reduction (amended and
unamended; Table 1), the only significant differ-
ences amongst treatment levels were between the
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no-plant controls and the vegetated treatments (0

and 1–4 respectively, Fig. 2A, C). Soil pH and

SOM showed similar patterns (though pH in the

no-plant controls was higher than other levels of

richness rather than lower; Table 1 and Fig.

2B, D); however, the models for pH and SOM

were not significantly better than the null models

(i.e., models without fixed effects) and so we

cannot say that there were truly differences in pH

or SOM with the treatments. This is most likely

due to the very narrow ranges over which pH

and SOM varied (Fig. 2A, B; Appendix: Table

A2).

While potential methane production (amended

only) and potential iron reduction (unamended

and amended) varied amongst the 16 levels of

plant community composition (Appendix: Table

A3), and functional group composition was a

significant effect (Table 1), the only significant

findings for vegetated treatments were that

potential methane production in amended soils

was significantly lower in the O treatment (0.14

ng CH4-C�g�1 dry soil�h�1) than in the T, FOR,

and FORT treatments (0.49, 0.52, and 0.62 ng

CH4-C�g�1 dry soil�h�1, respectively), while po-

tential iron reduction in the amended soils was

significantly lower in the O and F treatments

(8.88 and 9.23 lg Fe(II)�g�1 dry soil�h�1, respec-
tively) than in the OR treatment (26.94 lg
Fe(II)�g�1 dry soil�h�1; Appendix: Table A3).

Potential iron reduction in unamended soils did

not vary significantly with functional group

Fig. 1. Potential methane production (A) and potential iron reduction (B) by month and substrate. Unamended

(red bars)¼ soils incubated with water alone; amended (blue bars)¼ soils amended with 200 mM formate. All 16

treatments (including no-plant controls) included. Bars are geometric means with 95% CI. Within a panel, bars

with different letters are significantly different (P , 0.05).
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composition; however, the trends were the same
as for the amended soils (Appendix: Table A3).

When looking at the presence of each of the
four functional groups compared to their ab-
sence, a more significant pattern emerged:
potential methane production (amended only)
and potential iron reduction (amended and
unamended) were enhanced when either reeds
or tussocks were present compared to when they
were both absent (Fig. 3). In the absence of reeds
potential methane production (amended only)
and potential iron reduction were higher when
tussocks were present compared to absent
(though not significant for unamended potential
iron reduction). Similarly, when tussocks were
absent, potential methane production (amended
only) and potential iron reduction (amended and
unamended) were higher when reeds were
present compared to absent. However, when
reeds and tussocks were present together, neither
potential methane production nor potential iron
reduction was greater than when reeds were
present without tussocks or when tussocks were
present without reeds. The presence of reeds and

tussocks together did result in significantly
greater potential iron reduction (amended and
unamended) than the absence of both (Fig.
3C, D), but potential methane production was
not significantly greater when both reeds and
tussocks were present than when both were
absent (Fig. 3B). Root and shoot biomass were
also significantly greater in the presence of reeds
and/or tussocks compared to the absence of both
(Fig. 4 and Appendix: Table A4).

Relationships amongst soil
and plant properties

Potential methane production was positively
correlated with potential iron reduction in
amended and unamended soils (Table 2). Poten-
tial methane production (amended only) and
potential iron reduction (amended and un-
amended) were positively correlated with root
and shoot biomass (Table 2). Soil organic matter
(SOM) remained low (1.6–2.4%) and soil pH
remained slightly alkaline (7.7–8.0) throughout
the experiment (Appendix: Table A2). Despite the
narrow range over which SOM and pH varied,

Table 1. Linear mixed effect model F values (with df in parentheses) for main effects and significant interactions

from functional group richness (FGR), functional group composition (FGC), and presence/absence models for

soil response variables.

Main effects and interactions PMP PIR pH SOM

FGR model
FGR 4.88 (4, 71)** 6.25 (4, 74)*** 5.80 (4, 75)*** 4.98 (4, 74)***
Month 0.95 (2, 276) 20.93 (1, 147)*** 62.34 (2, 149)*** 1.43 (2, 147)
Substrate 256.10 (1, 69)*** 336.49 1, 70)*** n.a. n.a.
FGR 3 substrate 4.29 (4, 70)** 1.98 (4, 71) n.a. n.a.
Month 3 substrate 11.59 (2, 276)*** 1.16 (1, 147) n.a. n.a.

FGC model
FGC 3.64 (15, 61)*** 3.97 (15, 64)*** 3.39 (15, 65)*** 2.81 (15, 62)**
Month 1.33 (2, 237) 44.63 (1, 128)*** 95.26 (2, 128)*** 6.42 (2, 124)**
Substrate 470.77 (1, 61)*** 573.85 (1, 61)*** n.a. n.a.
FGC 3 substrate 2.09 (15, 61)* 1.17 (15, 61) n.a. n.a.
Month 3 substrate 13.66 (2, 237)*** 1.16 (1, 128) n.a. n.a.

Pres/abs model
F 0.16 (1, 62) 0.68 (1, 64) 0.02 (1, 65) 1.99 (1, 62)
O 1.31 (1, 63) 1.05 (1, 64) 0.27 (1, 65) 0.08 (1, 62)
R 4.81 (1, 63)* 13.42 (1, 64)*** 8.16 (1, 64)** 9.98 (1, 61)**
T 1.12 (1, 63) 4.09 (1, 64)* 0.74 (1, 65) 0.00 (1, 62)
R 3 T 9.55 (1, 61)** 5.19 (1, 64)* 3.72 (1, 65) 3.19 (1, 61)
Month 1.12 (2, 237) 31.45 (1, 127)*** 85.19 (2, 127)*** 4.11 (2, 124)*
Substrate 442.57 (1, 61)*** 454.43 (1, 61)*** n.a. n.a.
R 3 T 3 substrate 4.47 (1, 60)* 4.59 (1, 61)* n.a. n.a.
Month 3 substrate 11.22 (2, 237)*** 0.90 (1, 127) n.a. n.a.

Notes: PMP¼potential methane production, PIR¼potential iron reduction, SOM¼ soil organic matter, F¼presence/absence
of facultative annuals, O ¼ presence/absence of obligate annuals, R ¼ presence/absence of reeds, and T ¼ presence/absence of
tussocks. Month ¼ June, August, and November 2008 for PMP, SOM, and pH and August and November 2008 for PIR.
Substrate¼ unamended (water only) versus amended (200 mM formate). SOM and pH were determined prior to amendment.
For SOM and pH the fitted models are not better than the null models. * P , 0.05, ** P , 0.01, *** P , 0.001, n.a. ¼ not
applicable,
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potential methane production (amended only)
was significantly correlated with pH (negatively)
and SOM (positively). Soil organic matter was
also positively correlated with both root and
shoot biomass, and pH was negatively correlated
with SOM and root biomass but not shoot
biomass. There were no significant correlations
between potential iron reduction and pH or SOM
(Table 2).

DISCUSSION

We manipulated freshwater wetland plant
functional groups in controlled outdoor meso-
cosms to study the effects of plant community
structure on potential methane production and
potential iron reduction. We hypothesized that
potential methane production and potential iron
reduction would increase with belowground
biomass and that factors we expected would

lead to increased belowground biomass (func-
tional group richness and presence of reeds and/
or tussocks) would also be correlated with
increases in potential methane production and
potential iron reduction.

We found that the plant community had a
significant effect on microbial activity, but this
effect was primarily on potential iron reduction.
In unamended soils, where plant effects were not
masked by the addition of a carbon substrate, we
found a significant positive correlation between
potential iron reduction and plant biomass (root
and shoot), significant increases in potential iron
reduction in vegetated treatments compared to
the no-plant controls, and significantly higher
potential iron reduction in the presence of reeds
or both tussocks and reeds together compared to
the absence of both, lending partial support to all
of our hypotheses. We found these same patterns
in amended soils (potential iron reduction and

Fig. 2. The effect of functional group richness on potential methane production (A), soil pH (B), potential iron

reduction (C), and soil organic matter (D). Unamended (red bars)¼ soils incubated with water alone; amended

(blue bars)¼ soils amended with 200 mM formate. All sampling months are included. For (A) and (C) bars are

geometric means with 95% CI; for (B) and (D) bars are arithmetic means 6 1 SE. Within a panel, bars with

different letters are significantly different (P , 0.05). Note that the y-axis in (B) does not start at zero. Note also

that the models for pH (B) and SOM (D) were not significantly better than the null models.
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potential methane production), suggesting that
the effects of plants on microbial activity were
not masked entirely by the formate amendment.

Several studies have shown an inverse rela-
tionship between plant biomass and methane
emissions from wetlands, which is often attri-
buted to increased rhizospheric oxygenation and
methane consumption with increasing biomass
(Ström et al. 2005, Bouchard et al. 2007, Kao-
Kniffin et al. 2010, Koelbener et al. 2010). Our
finding that iron reduction was occurring in
unamended soils while potential methane pro-
duction remained barely detectable suggests that
another possible explanation for this inverse
relationship may be that competition from iron
reducing bacteria can inhibit methane produc-
tion. Iron reducing bacteria have been shown to
have lower threshold concentrations for electron
donors that are also utilized by methanogens
(i.e., organic acids and hydrogen; Lovley 1985,

Achtnich et al. 1995, Roden and Wetzel 2003).
Therefore, in the presence of oxidized iron, iron
reducing bacteria can outcompete methanogens
by maintaining the concentration of electron
donors at levels too low for methanogens to
metabolize (Roden and Wetzel 1996, Frenzel et
al. 1999, and Neubauer et al. 2005). If plant
biomass positively affects iron reducing bacteria,
as our positive correlation between plant biomass
and potential iron reduction in unamended soils
suggests, then in wetlands where oxidized iron is
readily available an inverse relationship between
plant biomass and methane emissions could be
attributed to this competition from iron reducing
bacteria. However, Achtnich et al. (1995) found
that excess oxidized iron inhibited methanogen-
esis only if electron donors were limiting in the
soil. Because SOM was low (;2%) in our soils
(we started with low OM soil to minimize the
effects of existing SOM stocks on carbon and

Fig. 3. The effect of functional group composition on potential methane production (A and B) and potential

iron reduction (C and D) for unamended (water only, light and dark red bars) and amended (200 mM formate,

light and dark blue bars) soils. In all four panels light bars¼absence of tussocks, dark bars¼presence of tussocks,

unhatched bars¼ absence of reeds, and hatched bars¼ presence of reeds. All sampling months are included but

the no-plant controls were excluded from analysis. Bars are geometric means with 95% CI. Within a panel, bars

with different letters are significantly different (P , 0.05).
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nutrient cycling) and our systems were young (2

years), our soils were likely limited in electron

donor availability. This is supported by our

finding that potential methane production and

potential iron reduction were both enhanced

substantially in soils amended with formate

compared to unamended soils.

In addition to providing carbon substrates to

iron reducing bacteria, plants have been shown

to positively influence iron reduction by creating

Fig. 4. The effect of functional group composition on shoot biomass (A) and root biomass (B) at peak biomass

(early September). In both panels gold bars¼ absence of tussocks, green bars¼ presence of tussocks, unhatched

bars¼absence of reeds, and hatched bars¼presence of reeds. The no-plant controls were excluded from analysis.

Bars are arithmetic means 6 1 SE. Within a panel, bars with different letters are significantly different (P , 0.05).

Table 2. Correlation coefficients for relationships amongst soil and plant response variables.

Response variable Log(UPIR) Log(APIR) pH SOM Root biomass Shoot biomass

Log(UPMP) 0.26** 0.18 0.15 0.13 0.10
Log(APMP) 0.47*** �0.32*** 0.32*** 0.41*** 0.41***
Log(UPIR) �0.11 0.15 0.23* 0.24*
Log(APIR) �0.05 0.12 0.47*** 0.36**
pH �0.28*** �0.46*** �0.12
SOM 0.28* 0.24*

Notes: Log(UPMP)¼ log transformed unamended (water only) potential methane production, Log(APMP)¼ log transformed
amended (200 mM formate) potential methane production, Log(UPIR)¼ log transformed unamended potential iron reduction,
Log(APIR) ¼ log transformed amended potential iron reduction, and SOM ¼ soil organic matter. Correlations amongst PMP,
pH, and SOM include June, August, and November 2008; correlations amongst PIR, pH, and SOM include August and
November 2008; correlations with root and shoot biomass include only August 2008. * P , 0.05, ** P , 0.01, *** P , 0.001.
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an oxygenated rhizosphere where reduced iron
can be re-oxidized (Roden and Wetzel 1996,
Neubauer et al. 2005). Whether re-oxidation of
iron in the rhizosphere was a factor limiting
methane production in our soils is difficult to
determine for two reasons. First, our starting
soils contained high levels of total iron (25,000
mg Fe/kg soil) and the water used to flood our
mesocosms likely brought in additional iron
(total iron increased to an average of 27,000 mg
Fe/kg soil after 18 months of flooding; Schultz
2010). This external source of iron may have
masked any effects due to internal cycling of
iron. Secondly, if re-oxidation was an important
limitation on methane production in situ, we
would expect to see an increase in methane
production in the lab when re-oxidation of iron
was prevented via anaerobic incubations. How-
ever, while we did see this in our amended soils
(where electron donors were not limiting), this
was not the case for our unamended soils. This is
most likely due to low electron donor availability
in conjunction with the high oxidized iron
availability in our unamended soils. In our short
incubations (10 days), and in situ where we were
unable to detect methane emissions, iron reduc-
ing bacteria were likely unable to draw down the
oxidized iron far enough for methanogens to
compete successfully for the electron donors
(though we cannot say for sure because we were
only able to measure reduced iron at two
sampling points). In the lab, our amended
incubations removed the electron donor limita-
tion, allowing methanogenic activity to increase
to the point were patterns were detectable.

As reported in Schultz et al. (2012), the
belowground biomass in these mesocosms in-
creased significantly with functional group rich-
ness (1 , 2¼ 3 , 4). However, while we did find
significant positive relationships between func-
tional group richness and potential methane
production (amended only) and functional group
richness and potential iron reduction (amended
and unamended), the only significant differences
were between the no-plant controls and the
planted treatments, which does not fully support
our second hypothesis. This suggests that the
presence of vegetation was more important than
plant functional group richness in mediating
potential methane production and potential iron
reduction. However, looking at richness masks

differences among treatments in plant communi-
ty composition within the same level of richness:
knowing which functional groups are present is
more important in this case than the number of
functional groups present. When looking at the
presence/absence of functional groups, we found
that in vegetated mesocosms reeds and tussocks
had the most influence on potential methane
production and potential iron reduction: poten-
tial methane production (amended only) and
potential iron reduction (amended and un-
amended) were significantly enhanced in the
presence of reeds or tussocks (supporting our
third hypothesis). Our findings suggest that this
increased potential methane production and
potential iron reduction is most likely due to
higher root biomass and SOM, and therefore
enhanced carbon substrate availability, in the
treatments containing reeds or tussocks com-
pared to treatments containing only annuals.
However, we cannot rule out the possibility that
litter chemistry might have played a role. For
example, Williams and Yavitt (2010) also found
reduced methane production in the presence of a
facultative annual (Lythrum salicaria) compared
to a reed (Juncus effusus) or a tussock (Carex
lacustris), which they attributed to variation in
biochemical composition of plant litter.

Studies have shown that increases in root
exudates (Koelbener et al. 2010) and methane
production (van der Nat and Middelburg 1998)
are positively correlated with methane emissions.
Therefore, if wetland systems dominated by
reeds and/or tussocks have increased methane
production (due to increased quantity and/or
quality of root exudates and litter), this suggests
that they might also have increased methane
emissions compared to wetlands dominated by
annuals. However, some research has shown that
methane emissions are controlled more by
differences in rhizospheric oxygenation or plant
transport of methane than by root exudates or
methane production. For example, Schimel
(1995) found that total methane production was
not a good predictor of actual emissions; instead,
emissions were controlled primarily by the
composition of the plant community and its
ability to transport methane. Additionally, Ström
et al. (2005) found that despite increased carbon
substrate availability (acetate) under Eriophorum
vaginatum or Juncus effusus, methane emissions
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were reduced compared to areas dominated by
Carex rostrata, which they attributed to the high
rhizospheric oxygenation exhibited by E. vagi-
natum and J. effusus.

Because of this continued uncertainty sur-
rounding the factors that contribute most toward
methane emissions, we cannot infer whether
wetlands dominated by reeds or tussocks would
have greater emissions that those dominated by
annuals based on potential methane production
rates alone. However, a recent study looking at
the influence of plant functional types on
methane emissions (Kao-Kniffin et al. 2010)
found no methane emissions from forb treat-
ments (similar in species composition to our
facultative annuals) and variable emissions (in-
termediate to high) from their tussock treatments
(similar in species combination to our reeds and
tussocks combined). They attributed these differ-
ences in emissions to differences in plant pro-
ductivity, plant transport of methane to the
atmosphere, and rhizospheric oxygenation. Their
findings lend support to the hypothesis that
methane emissions may be enhanced in wetlands
dominated by reeds or tussocks compared to
those dominated by annuals.

Finally, while we planted four different func-
tional groups as defined by Boutin and Keddy
(1993), with respect to potential methane pro-
duction and potential iron reduction we didn’t
find any functional differences between the
facultative and obligate annuals or between the
reeds and tussocks. This suggests that for
methane production and iron reduction we
functionally only had two groups: annuals and
perennials. However, the same may not be true
for other aspects of methane and iron dynamics
such as gas transport or rhizospheric oxygena-
tion capacity. As methane emissions are con-
trolled by the combination of such factors, future
research examining the role of functional groups
on methane and iron dynamics in wetlands
should consider additional plant traits in deter-
mining which functional groups to use (for
example, internal gas flow mechanisms, or other
traits that mediate gas transport, and quantity/
quality of plant litter and root exudates).

In conclusion, we found that the presence of
vegetation (compared to no-plant controls),
increases in plant biomass, and the presence of
reeds or tussocks (compared to mesocosms

containing only annuals) led to increased poten-
tial iron reduction in amended and unamended
soils. In our mesocosms, where oxidized iron was
abundant and electron donors were limiting, iron
reducing bacteria outcompeted methanogens,
keeping potential methane production barely
detectable in unamended lab incubations and
preventing in situ methane emissions. This
inhibition of methanogenesis by iron reducing
bacteria adds to a growing body of research
highlighting the importance of considering the
influence of microbes that utilize alternative
electron acceptors when studying methane dy-
namics in wetlands. When the possibility of re-
oxidizing iron was eliminated (anaerobic incuba-
tions) and the electron donor limitation was
removed (amending with formate), potential
methane production increased and followed the
same patterns as potential iron reduction. Taken
together these findings suggest that in systems
where oxidized iron availability is high (due to
large pools of oxidized iron or rapid cycling of
iron), particularly in wetlands where electron
donors are limiting, competition with iron
reducing bacteria may be an important control
on methane emissions. In the absence of abun-
dant oxidized iron and/or the presence of
abundant electron donors wetlands dominated
by reeds or tussocks may have increased meth-
ane production, and, depending on functional
traits such as plant transport and rhizospheric
oxygenation capacities, this may lead to in-
creased methane emissions in certain wetlands.
Additional research examining the role these
plant functional groups play in other aspects of
methane dynamics, particularly plant transport
and rhizospheric oxygenation, will be useful
given the importance of methane as a greenhouse
gas.

ACKNOWLEDGMENTS

We thank Melissa Knorr, Katharine Burnham, Eric
Morrison, Ashley Fetterman, Brian Godbois, Amy
Barrett, Constance Rice, Michael Szuter, Thomas Luff,
Lars Meyer, Gwen Dubelko, and Sarah Boley for their
help collecting soil samples, setting up incubations,
and collecting gas samples. We also thank Dr. Philip
Ramsey for advice on linear mixed effect models and
Dr. David Burdick for helpful conversations about
wetland redox dynamics. This work was supported by
a grant from the National Science Foundation (DEB-

v www.esajournals.org 13 April 2013 v Volume 4(4) v Article 44

ANDREWS ET AL.



0516140) to S.D. Frey and V. Bouchard. Comments
from two anonymous reviewers greatly improved the
manuscript.

LITERATURE CITED

Achtnich, C., F. Bak, and R. Conrad. 1995. Competition
for electron donors among nitrate reducers, ferric
iron reducers, sulfate reducers, and methanogens
in anoxic paddy soil. Biology and Fertility of Soils
19:65–72.

Bouchard, V., S. D. Frey, J. M. Gilbert, and S. E. Reed.
2007. Effects of macrophyte functional group
richness on emergent freshwater wetland func-
tions. Ecology 88:2903–2914.

Boutin, C., and P. A. Keddy. 1993. A functional
classification of wetland plants. Journal of Vegeta-
tion Science 4:591–600.

Calhoun, A., and G. M. King. 1997. Regulation of root-
associated methanotrophy by oxygen availability
in the rhizosphere of two aquatic macrophytes.
Applied and Environmental Microbiology 63:3051–
3058.

Chanton, J. P., G. J. Whiting, J. D. Happell, and G.
Gerard. 1993. Contrasting rates and diurnal pat-
terns of methane emission from emergent aquatic
macrophytes. Aquatic Botany 46:111–128.

Chapin, F. S., III et al. 2000. Consequences of changing
biodiversity. Nature 405:234–242.

Christensen, T. R., N. Panikov, M. Mastepanov, A.
Joabsson, A. Stewart, M. Öquist, M. Sommerkorn,
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SUPPLEMENTAL MATERIAL

APPENDIX

Table A1. Representative plant species by functional group.

Functional group Latin name Common name

Facultative annuals Eupatorium perfoliatum L. Common boneset
Lycopus americanus Muhl. ex W. Bart. American water horehound
Mimulus ringens L. Allegheny monkeyflower
Verbena hastata L. Swamp verbena

Obligate annuals Bidens cernua L. Nodding beggartick
Echinochloa muricata (Beauv.) Fern. Rough barnyardgrass
Panicum dichotomiflorum Michx. Fall panicgrass
Polygonum pensylvanicum L. Pennsylvania smartweed

Reeds Eleocharis erythropoda Steud. Bald spikerush
Eleocharis palustris L. Common spikerush
Juncus canadensis J. Gay ex Laharp Canadian rush
Juncus effusus L. Common rush

Tussocks Acorus calamus L. Calamus or sweet flag
Calamagrostis canadensis (Michx.) Beauv. Bluejoint
Carex crinita Lam. Fringed sedge
Scirpus cyperinus (L.) Kunth Woolgrass

Table A2. Mean pH and soil organic matter (SOM) by

plant functional group composition (FGC) treat-

ment.

FGC pH SOM (%)

C 8.0 (0.04) 1.61 (0.13)
F 7.9 (0.04) 1.92 (0.12)
O 7.9 (0.04) 1.78 (0.12)
R 7.8 (0.04) 2.32 (0.13)
T 7.8 (0.04) 2.05 (0.13)
FO 7.9 (0.04) 1.99 (0.12)
FR 7.8 (0.04) 2.41 (0.12)
FT 7.8 (0.04) 2.06 (0.12)
OR 7.7 (0.04) 2.13 (0.12)
OT 7.9 (0.04) 2.06 (0.12)
RT 7.8 (0.04) 1.94 (0.12)
FOR 7.8 (0.04) 2.23 (0.13)
FOT 7.8 (0.04) 2.04 (0.13)
FRT 7.8 (0.04) 2.15 (0.12)
ORT 7.9 (0.04) 2.12 (0.13)
FORT 7.7 (0.04) 2.41 (0.12)

Notes: C ¼ no-plant controls, F ¼ facultative annuals, O ¼
obligate annuals, R ¼ reeds, T ¼ tussocks. Means are
arithmetic (SE).
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Table A3. Mean potential methane production (PMP) and potential iron reduction (PIR) by plant functional

group composition (FGC) treatment.

FGC
Unamended PMP

(ng CH4-C�g�1 dry soil�h�1)
Amended PMP

(ng CH4-C�g�1 dry soil�h�1)
Unamended PIR

(lg Fe(II)�g�1 dry soil�h�1)
Amended PIR

(lg Fe(II)�g�1 dry soil�h�1)

C 0.04 (0.02–0.06) 0.09 (0.05–0.14) 2.35 (1.40–3.67) 6.74 (4.54–9.81)
F 0.04 (0.02–0.07) 0.24 (0.15–0.37) 4.50 (2.94–6.69) 9.23 (6.32–13.28)
O 0.04 (0.02–0.07) 0.14 (0.08–0.22) 3.48 (2.16–5.37) 8.88 (6.07–12.80)
R 0.06 (0.04–0.10) 0.47 (0.29–0.75) 7.54 (5.11–10.93) 18.98 (13.30–26.91)
T 0.05 (0.03–0.08) 0.49 (0.31–0.77) 6.92 (4.67–10.06) 17.67 (12.15–25.50)
FO 0.04 (0.02–0.07) 0.16 (0.10–0.25) 3.49 (2.21–5.27) 11.05 (7.63–15.83)
FR 0.04 (0.02–0.07) 0.46 (0.30–0.73) 7.52 (5.10–10.91) 21.32 (14.97–30.17)
FT 0.04 (0.02–0.06) 0.43 (0.27–0.68) 5.95 (3.76–9.13) 16.04 (10.98–23.24)
OR 0.04 (0.02–0.08) 0.42 (0.26–0.67) 5.87 (3.91–8.59) 26.94 (19.00–38.04)
OT 0.06 (0.03–0.10) 0.35 (0.22–0.56) 5.69 (3.70–8.51) 17.12 (11.74–24.77)
RT 0.04 (0.02–0.07) 0.32 (0.20–0.50) 7.21 (4.88–10.48) 20.67 (14.51–29.27)
FOR 0.05 (0.02–0.08) 0.52 (0.33–0.81) 5.16 (3.34–7.74) 14.73 (10.26–20.98)
FOT 0.04 (0.02–0.06) 0.35 (0.22–0.55) 4.61 (3.02–6.84) 16.19 (11.31–23.02)
FRT 0.04 (0.02–0.07) 0.30 (0.19–0.48) 5.70 (3.79–8.36) 15.58 (10.87–22.17)
ORT 0.04 (0.02–0.08) 0.29 (0.18–0.45) 6.14 (4.11–8.97) 16.49 (11.52–23.44)
FORT 0.04 (0.02–0.07) 0.62 (0.40–0.97) 7.74 (5.25–11.20) 22.00 (15.46–31.13)

Notes: Abbreviations as in Table A2. Unamended ¼ incubated in water only; Amended ¼ amended with 200 mM formate.
Means are geometric (95% CI).

Table A4. Linear mixed effect presence/absence model

F values for main effects and significant interactions

for root and shoot biomass.

Main effects and interactions Root biomass Shoot biomass

F 1.25 2.60
O 0.40 2.54
R 29.86*** 0.58
T 17.02*** 16.17***
R 3 T 11.01*** 12.41***

Notes: Abbreviations as in Table A2. Only significant
interactions were included. Numerator df ¼ 1 and denomi-
nator df¼ 64. * P , 0.05, ** P , 0.01, *** P , 0.001.
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