112 research outputs found

    Performance Investigation of Transcritical Carbon Dioxide Refrigeration Cycle

    Get PDF
    AbstractCO2 has low critical pressure and temperature. This gives an opportunity CO2 cycles to work in a transcritical nature where heat rejection and absorption are done at supercritical and subcritical conditions, respectively. However, this characteristic posed some performance issues for CO2 refrigeration cycle such as the pressure and temperature of CO2 becomes independent of one another above the critical point thus specifying the operating conditions would be tough. It is also important to identify the optimum cooler pressure and control it; in order to get high cycle coefficient of performance (COP). Thus, the objective of this paper is to investigate the performance of a transcritical CO2 compression refrigeration cycle for different parameters and evaluate its COP. To achieve that, a refrigeration cycle was modeled using thermodynamic concepts. Then, the model was simulated for various parameters that were manipulated to investigate the cycle performance. Maintaining other operating parameters constant the highest COP was 3.24 at 10MPa gas cooler pressure. It was also observed that the cycle is suitable for air-condition application than refrigeration cycle, as COP increases when the evaporator temperature increases. Simulations were conducted using EXCEL developed program. The results can be used in the design of CO2 refrigeration cycle

    Effects of dissipation in an adiabatic quantum search algorithm

    Get PDF
    We consider the effect of two different environments on the performance of the quantum adiabatic search algorithm, a thermal bath at finite temperature, and a structured environment similar to the one encountered in systems coupled to the electromagnetic field that exists within a photonic crystal. While for all the parameter regimes explored here, the algorithm performance is worsened by the contact with a thermal environment, the picture appears to be different when considering a structured environment. In this case we show that, by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More particularly, we find that the imaginary part of the rates can not be neglected with the usual argument that it simply amounts to an energy shift, and in fact influences crucially the system dynamics.Comment: 18 pages, 9 figure

    Structurally complex farms support high avian functional diversity in tropical montane Ethiopia

    Get PDF
    Of all feeding guilds, understorey insectivores are thought to be most sensitive to disturbance and forest conversion. We compared the composition of bird feeding guilds in tropical forest fragments with adjacent agro-ecosystems in a montane region of south-west Ethiopia. We used a series of point counts to survey birds in 19 agriculture and 19 forest sites and recorded tree species within each farm across an area of 40 × 35 km. Insectivores (~17 spp. per plot), frugivores (~3 spp. per plot) and omnivores (~5 spp. per plot) maintained species density across habitats, while granivores and nectarivores increased in the agricultural sites by factors of 7 and 3 respectively. Species accumulation curves of each guild were equal or steeper in agriculture, suggesting that agricultural and forest landscapes were equally heterogeneous for all bird guilds. Counter to most published studies, we found no decline in insectivore species richness with forest conversion. However, species composition differed between the two habitats, with certain forest specialists replaced by other species within each feeding guild. We suggest that the lack of difference in insectivorous species numbers between forest and agriculture in this region is due to the benign nature of the agricultural habitat, but also due to a regional species pool which contains many bird species which are adapted to open habitats

    Bacterial sepsis in patients with visceral leishmaniasis in Northwest Ethiopia

    Get PDF
    Background and Objectives. Visceral leishmaniasis (VL) is one of the neglected diseases affecting the poorest segment of world populations. Sepsis is one of the predictors for death of patients with VL. This study aimed to assess the prevalence and factors associated with bacterial sepsis, causative agents, and their antimicrobial susceptibility patterns among patients with VL. Methods. A cross-sectional study was conducted among parasitologically confirmed VL patients suspected of sepsis admitted to the University of Gondar Hospital, Northwest Ethiopia, from February 2012 to May 2012. Blood cultures and other clinical samples were collected and cultured following the standard procedures. Results. Among 83 sepsis suspected VL patients 16 (19.3%) had culture confirmed bacterial sepsis. The most frequently isolated organism was Staphylococcus aureus (68.8%; 11/16), including two methicillin-resistant isolates (MRSA). Patients with focal bacterial infection were more likely to have bacterial sepsis (P<0.001). Conclusions. The prevalence of culture confirmed bacterial sepsis was high, predominantly due to S. aureus. Concurrent focal bacterial infection was associated with bacterial sepsis, suggesting that focal infections could serve as sources for bacterial sepsis among VL patients. Careful clinical evaluation for focal infections and prompt initiation of empiric antibiotic treatment appears warranted in VL patients

    Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information

    Full text link
    By use of the two measures presented recently, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and the reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relations between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed

    Theory of Pseudomodes in Quantum Optical Processes

    Get PDF
    This paper deals with non-Markovian behaviour in atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in high Q cavities or photonic band gap materials. In cases such as the former, we show that the pseudo mode theory for single quantum reservoir excitations can be obtained by applying the Fano diagonalisation method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two and many discrete quasimodes are made. For a simple photonic band gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes

    Global and national Burden of diseases and injuries among children and adolescents between 1990 and 2013

    Get PDF
    Importance The literature focuses on mortality among children younger than 5 years. Comparable information on nonfatal health outcomes among these children and the fatal and nonfatal burden of diseases and injuries among older children and adolescents is scarce. Objective To determine levels and trends in the fatal and nonfatal burden of diseases and injuries among younger children (aged <5 years), older children (aged 5-9 years), and adolescents (aged 10-19 years) between 1990 and 2013 in 188 countries from the Global Burden of Disease (GBD) 2013 study. Evidence Review Data from vital registration, verbal autopsy studies, maternal and child death surveillance, and other sources covering 14 244 site-years (ie, years of cause of death data by geography) from 1980 through 2013 were used to estimate cause-specific mortality. Data from 35 620 epidemiological sources were used to estimate the prevalence of the diseases and sequelae in the GBD 2013 study. Cause-specific mortality for most causes was estimated using the Cause of Death Ensemble Model strategy. For some infectious diseases (eg, HIV infection/AIDS, measles, hepatitis B) where the disease process is complex or the cause of death data were insufficient or unavailable, we used natural history models. For most nonfatal health outcomes, DisMod-MR 2.0, a Bayesian metaregression tool, was used to meta-analyze the epidemiological data to generate prevalence estimates. Findings Of the 7.7 (95% uncertainty interval [UI], 7.4-8.1) million deaths among children and adolescents globally in 2013, 6.28 million occurred among younger children, 0.48 million among older children, and 0.97 million among adolescents. In 2013, the leading causes of death were lower respiratory tract infections among younger children (905 059 deaths; 95% UI, 810 304-998 125), diarrheal diseases among older children (38 325 deaths; 95% UI, 30 365-47 678), and road injuries among adolescents (115 186 deaths; 95% UI, 105 185-124 870). Iron deficiency anemia was the leading cause of years lived with disability among children and adolescents, affecting 619 (95% UI, 618-621) million in 2013. Large between-country variations exist in mortality from leading causes among children and adolescents. Countries with rapid declines in all-cause mortality between 1990 and 2013 also experienced large declines in most leading causes of death, whereas countries with the slowest declines had stagnant or increasing trends in the leading causes of death. In 2013, Nigeria had a 12% global share of deaths from lower respiratory tract infections and a 38% global share of deaths from malaria. India had 33% of the world’s deaths from neonatal encephalopathy. Half of the world’s diarrheal deaths among children and adolescents occurred in just 5 countries: India, Democratic Republic of the Congo, Pakistan, Nigeria, and Ethiopia. Conclusions and Relevance Understanding the levels and trends of the leading causes of death and disability among children and adolescents is critical to guide investment and inform policies. Monitoring these trends over time is also key to understanding where interventions are having an impact. Proven interventions exist to prevent or treat the leading causes of unnecessary death and disability among children and adolescents. The findings presented here show that these are underused and give guidance to policy makers in countries where more attention is needed

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill &amp; Melinda Gates Foundation
    corecore