3,718 research outputs found
Chemical Modelling of Young Stellar Objects, I. Method and Benchmarks
Upcoming facilities such as the Herschel Space Observatory or ALMA will
deliver a wealth of molecular line observations of young stellar objects
(YSOs). Based on line fluxes, chemical abundances can then be estimated by
radiative transfer calculations. To derive physical properties from abundances,
the chemical network needs to be modeled and fitted to the observations. This
modeling process is however computationally exceedingly demanding, particularly
if in addition to density and temperature, far UV (FUV) irradiation, X-rays,
and multi-dimensional geometry have to be considered.
We develop a fast tool, suitable for various applications of chemical
modeling in YSOs. A grid of the chemical composition of the gas having a
density, temperature, FUV irradiation and X-ray flux is pre-calculated as a
function of time. A specific interpolation approach is developed to reduce the
database to a feasible size. Published models of AFGL 2591 are used to verify
the accuracy of the method. A second benchmark test is carried out for FUV
sensitive molecules. The novel method for chemical modeling is more than
250,000 times faster than direct modeling and agrees within a mean factor of
1.35. The tool is distributed for public use.
In the course of devloping the method, the chemical evolution is explored: We
find that X-ray chemistry in envelopes of YSOs can be reproduced by means of an
enhanced cosmic-ray ionization rate. We further find that the abundance of CH+
in low-density gas with high ionization can be enhanced by the recombination of
doubly ionized carbon (C++) and suggest a new value for the initial abundance
of the main sulphur carrier in the hot-core.Comment: Accepted by ApJS. 24 pages, 15 figures. A version with higher
resolution images is available from
http://www.astro.phys.ethz.ch/staff/simonbr/papgridI.pdf . Online data
available at http://www.astro.phys.ethz.ch/chemgrid.html . Second paper of
this series of papers available at arXiv:0906.058
A Parameter Study of the Dust and Gas Temperature in a Field of Young Stars
We model the thermal effect of young stars on their surrounding environment
in order to understand clustered star formation. We take radiative heating of
dust, dust-gas collisional heating, cosmic-ray heating, and molecular cooling
into account. Using Dusty, a spherical continuum radiative transfer code, we
model the dust temperature distribution around young stellar objects with
various luminosities and surrounding gas and dust density distributions. We
have created a grid of dust temperature models, based on our modeling with
Dusty, which we can use to calculate the dust temperature in a field of stars
with various parameters. We then determine the gas temperature assuming energy
balance. Our models can be used to make large-scale simulations of clustered
star formation more realistic.Comment: 29 pages, 19 figures. Submitted to Ap
Water abundance variations around high-mass protostars: HIFI observations of the DR21 region
Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known.
Aims. We study the distribution of dust continuum and H_(2)O and ^(13)CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region.
Methods. Herschel-HIFI spectra near 1100 GHz show narrow ^(13)CO 10–9 emission and H_(2)O 1_(11)–0_(00) absorption from the dense core and broad emission from the outflow in both lines. The H_(2)O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines.
Results. The dust continuum emission is extended over 36” FWHM, while the ^(13)CO and H_(2)O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10^(-10) for H_(2)O and ~8×10^(-7) for ^(13)CO in the dense core, and higher H_(2)O abundances of ~4×10^(-9) in the foreground cloud and ~7×10^(-7) in the outflow.
Conclusions. The high H_(2)O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H_(2)O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud
Reconfigurable Gradient Index using VO2 Memory Metamaterials
We demonstrate tuning of a metamaterial device that incorporates a form of
spatial gradient control. Electrical tuning of the metamaterial is achieved
through a vanadium dioxide layer which interacts with an array of split ring
resonators. We achieved a spatial gradient in the magnitude of permittivity,
writeable using a single transient electrical pulse. This induced gradient in
our device is observed on spatial sc ales on the order of one wavelength at 1
THz. Thus, we show the viability of elements for use in future devices with
potential applications in beamforming and communicationsComment: 4 pages, 3 figure
The JCMT Spectral Legacy Survey: physical structure of the molecular envelope of the high-mass protostar AFGL2591
The understanding of the formation process of massive stars (>8 Msun) is
limited, due to theoretical complications and observational challenges.
We investigate the physical structure of the large-scale (~10^4-10^5 AU)
molecular envelope of the high-mass protostar AFGL2591 using spectral imaging
in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160
spectral features, this paper uses the 35 that are spatially resolved.
The observed spatial distributions of a selection of six species are compared
with radiative transfer models based on a static spherically symmetric
structure, a dynamic spherical structure, and a static flattened structure. The
maps of CO and its isotopic variations exhibit elongated geometries on scales
of ~100", and smaller scale substructure is found in maps of N2H+, o-H2CO, CS,
SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all
molecular lines presented here, except SO, SO2, and H2CO. We find two emission
peaks in warm (Eup~200K) methanol separated by 12", indicative of a secondary
heating source in the envelope.
The spherical models are able to explain the distribution of emission for the
optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and
CS, nor for the optically thin C17O. The introduction of velocity structure
mitigates the optical depth effects, but does not fully explain the
observations, especially in the spectral dimension. A static flattened envelope
viewed at a small inclination angle does slightly better.
We conclude that a geometry of the envelope other than an isotropic static
sphere is needed to circumvent line optical depth effects. We propose that this
could be achieved in envelope models with an outflow cavity and/or
inhomogeneous structure at scales smaller than ~10^4 AU. The picture of
inhomogeneity is supported by observed substructure in at least six species.Comment: 17 pages; accepted for publication in A&
De-blending Deep Herschel Surveys: A Multi-wavelength Approach
Cosmological surveys in the far infrared are known to suffer from confusion.
The Bayesian de-blending tool, XID+, currently provides one of the best ways to
de-confuse deep Herschel SPIRE images, using a flat flux density prior. This
work is to demonstrate that existing multi-wavelength data sets can be
exploited to improve XID+ by providing an informed prior, resulting in more
accurate and precise extracted flux densities. Photometric data for galaxies in
the COSMOS field were used to constrain spectral energy distributions (SEDs)
using the fitting tool CIGALE. These SEDs were used to create Gaussian prior
estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the
extracted SPIRE flux densities were run through CIGALE again to allow us to
compare the performance of the two priors. Inferred ALMA flux densities
(F), at 870m and 1250m, from the best fitting SEDs from the
second CIGALE run were compared with measured ALMA flux densities (F) as an
independent performance validation. Similar validations were conducted with the
SED modelling and fitting tool MAGPHYS and modified black body functions to
test for model dependency. We demonstrate a clear improvement in agreement
between the flux densities extracted with XID+ and existing data at other
wavelengths when using the new informed Gaussian prior over the original
uninformed prior. The residuals between F and F were calculated. For
the Gaussian prior, these residuals, expressed as a multiple of the ALMA error
(), have a smaller standard deviation, 7.95 for the Gaussian
prior compared to 12.21 for the flat prior, reduced mean, 1.83
compared to 3.44, and have reduced skew to positive values, 7.97
compared to 11.50. These results were determined to not be significantly model
dependent. This results in statistically more reliable SPIRE flux densities.Comment: 8 pages, 7 figures, 3 tables. Accepted for publication in A&
Hydrogen Fluoride in High-Mass Star-forming Regions
Hydrogen fluoride has been established to be an excellent tracer of molecular
hydrogen in diffuse clouds. In denser environments, however, the HF abundance
has been shown to be approximately two orders of magnitude lower. We present
Herschel/HIFI observations of HF J=1-0 toward two high-mass star formation
sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption
in foreground clouds and the source itself, while in AFGL 2591 HF is partially
in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the
diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive
a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds
are most likely caused by freeze out of HF molecules onto dust grains in
high-density gas. In AFGL 2591, the view of the hot core is obstructed by
absorption in the massive outflow, in which HF is also very abundant 3.6e-8)
due to the desorption by sputtering. These observations provide further
evidence that the chemistry of interstellar fluorine is controlled by freeze
out onto gas grains.Comment: accepted in Ap
APECS - The Atacama Pathfinder Experiment Control System
APECS is the distributed control system of the new Atacama Pathfinder
EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude
of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama
Large Millimeter Array (ALMA) software and employs a modern, object-oriented
design using the Common Object Request Broker Architecture (CORBA) as the
middleware. New generic device interfaces simplify adding instruments to the
control system. The Python based observer command scripting language allows
using many existing software libraries and facilitates creating more complex
observing modes. A new self-descriptive raw data format (Multi-Beam FITS or
MBFITS) has been defined to store the multi-beam, multi-frequency data. APECS
provides an online pipeline for initial calibration, observer feedback and a
quick-look display. APECS is being used for regular science observations in
local and remote mode since August 2005.Comment: 4 pages, A&A, accepte
Water destruction by X-rays in young stellar objects
We study the H2O chemistry in star-forming environments under the influence
of a central X-ray source and a central far ultraviolet (FUV) radiation field.
The gas-phase water chemistry is modeled as a function of time, hydrogen
density and X-ray flux. To cover a wide range of physical environments,
densities between n_H = 10^4-10^9 cm^-3 and temperatures between T = 10-1000 K
are studied. Three different regimes are found: For T < 100 K, the water
abundance is of order 10^-7-10^-6 and can be somewhat enhanced or reduced due
to X-rays, depending on time and density. For 100 K < T < 250 K, H2O is reduced
from initial x(H2O) ~ 10^-4 following ice evaporation to x(H2O) ~ 10^-6 for F_X
> 10^-3 ergs s-1 cm^-2 (t = 10^4 yrs) and for F_X > 10^-4 ergs s^-1 cm^-2 (t =
10^5 yrs). At higher temperatures (T > 250 K) and hydrogen densities, water can
persist with x(H2O) ~ 10^-4 even for high X-ray fluxes. The X-ray and FUV
models are applied to envelopes around low-mass Class 0 and I young stellar
objects (YSOs). Water is destroyed in both Class 0 and I envelopes on
relatively short timescales (t ~ 5000 yrs) for realistic X-ray fluxes, although
the effect is less prominent in Class 0 envelopes due to the higher X-ray
absorbing densities there. FUV photons from the central source are not
effective in destroying water. The average water abundance in Class I sources
for L_X > 10^27 ergs s^-1 is predicted to be x(H2O) < 10^-6.Comment: 12 pages, 14 figures, Accepted for publication in A&
- …
