103 research outputs found

    Composable security of delegated quantum computation

    Full text link
    Delegating difficult computations to remote large computation facilities, with appropriate security guarantees, is a possible solution for the ever-growing needs of personal computing power. For delegated computation protocols to be usable in a larger context---or simply to securely run two protocols in parallel---the security definitions need to be composable. Here, we define composable security for delegated quantum computation. We distinguish between protocols which provide only blindness---the computation is hidden from the server---and those that are also verifiable---the client can check that it has received the correct result. We show that the composable security definition capturing both these notions can be reduced to a combination of several distinct "trace-distance-type" criteria---which are, individually, non-composable security definitions. Additionally, we study the security of some known delegated quantum computation protocols, including Broadbent, Fitzsimons and Kashefi's Universal Blind Quantum Computation protocol. Even though these protocols were originally proposed with insufficient security criteria, they turn out to still be secure given the stronger composable definitions.Comment: 37+9 pages, 13 figures. v3: minor changes, new references. v2: extended the reduction between composable and local security to include entangled inputs, substantially rewritten the introduction to the Abstract Cryptography (AC) framewor

    National profile of foot orthotic provision in the United Kingdom, part 2 : podiatrist, orthotist and physiotherapy practices.

    Get PDF
    Background A national survey recently provided the first description of foot orthotic provision in the United Kingdom. This article aims to profile and compare the foot orthoses practice of podiatrists, orthotists and physiotherapists within the current provision. Method Quantitative data were collected from podiatrists, orthotists and physiotherapists via an online questionnaire. The topics, questions and answers were developed through a series of pilot phases. The professions were targeted through electronic and printed materials advertising the survey. Data were captured over a 10 month period in 2016. Differences between professions were investigated using Chi squared and Fischer’s exact tests, and regression analysis was used to predict the likelihood of each aspect of practice in each of the three professions. Results Responses from 357 podiatrists, 93 orthotists and 49 physiotherapists were included in the analysis. The results reveal statistically significant differences in employment and clinical arrangements, the clinical populations treated, and the nature and volume of foot orthoses caseload. Conclusion Podiatrists, orthotists and physiotherapists provide foot orthoses to important clinical populations in both a prevention and treatment capacity. Their working context, scope of practice and mix of clinical caseload differs significantly, although there are areas of overlap. Addressing variations in practice could align this collective workforce to national allied health policy

    Topical Gene Electrotransfer to the Epidermis of Hairless Guinea Pig by Non-invasive Multielectrode Array

    Get PDF
    Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after geneelectrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest geneelectrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient

    Cervical radiculopathy: Study protocol of a randomised clinical trial evaluating the effect of mobilisations and exercises targeting the opening of intervertebral foramen [NCT01500044]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical radiculopathy is a common form of neck pain and has been shown to lead to severe disability. Clinical rehabilitation approaches for cervical radiculopathies commonly include exercise and manual therapy interventions targeting the opening of intervertebral foramen, but evidence regarding their effectiveness is scarce. The primary objective of this randomised clinical trial is to compare, in terms of pain and disability, a rehabilitation program targeting the opening of intervertebral foramen to a conventional rehabilitation program, for patients presenting acute or subacute cervical radiculopathies. The hypothesis is that the rehabilitation program targeting the opening of intervertebral foramen will be significantly more effective in reducing pain and disability than the conventional rehabilitation program.</p> <p>Methods/Design</p> <p>This study is a double-blind (participants and evaluators blinded) randomised clinical trial that will allow the comparison of patients with a cervical radiculopathy randomly assigned to one of two groups: one group will receive a 4-week rehabilitation program targeting the opening of intervertebral foramen, and the second group will receive a 4-week conventional rehabilitation program. Thirty-six subjects with cervical radiculopathy will be recruited from participating medical and physiotherapy clinics and will be evaluated at baseline, at the end of the 4-week program and four weeks following the end of the program. The primary outcome measure will be the validated Neck Disability Index questionnaire. Secondary outcome measures will include the short version of the Disabilities of the Arm, Shoulder and Hand questionnaire, a numerical pain rating scale, cervicothoracic mobility and patients' perceived global rating of change. During the 4-week rehabilitation program, each participant will take part in eight physiotherapy treatment sessions (2 session/week) and will perform a home exercise program. A mixed-model, 2-way ANOVA will be used to analyze the effects of the rehabilitation programs.</p> <p>Discussion</p> <p>Control trials are needed to define ideal intervention approaches in rehabilitation for this population. This randomised clinical trial will be the first study that directly compares a rehabilitation program targeting the opening of intervertebral foramen to a conventional rehabilitation program for patients with cervical radiculopathy. The results of this study may help to establish best clinical practice guidelines for this patient population.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01500044">NCT01500044</a></p

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism
    corecore