897 research outputs found
The digital data processing concepts of the LOFT mission
The Large Observatory for X-ray Timing (LOFT) is one of the five mission
candidates that were considered by ESA for an M3 mission (with a launch
opportunity in 2022 - 2024). LOFT features two instruments: the Large Area
Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class
instrument with approximately 15 times the collecting area of the largest
timing mission so far (RXTE) for the first time combined with CCD-class
spectral resolution. The WFM will continuously monitor the sky and recognise
changes in source states, detect transient and bursting phenomena and will
allow the mission to respond to this. Observing the brightest X-ray sources
with the effective area of the LAD leads to enormous data rates that need to be
processed on several levels, filtered and compressed in real-time already on
board. The WFM data processing on the other hand puts rather low constraints on
the data rate but requires algorithms to find the photon interaction location
on the detector and then to deconvolve the detector image in order to obtain
the sky coordinates of observed transient sources. In the following, we want to
give an overview of the data handling concepts that were developed during the
study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved
Peculiar outburst of A 0535+26 observed with INTEGRAL, RXTE and Suzaku
A normal outburst of the Be/X-ray binary system A0535+26 has taken place in
August 2009. It is the fourth in a series of normal outbursts that have occured
around the periastron passage of the source, but is unusual by starting at an
earlier orbital phase and by presenting a peculiar double-peaked light curve. A
first "flare" (lasting about 9 days from MJD 55043 on) reached a flux of 440
mCrab. The flux then decreased to less than 220 mCrab, and increased again
reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity
observations have been performed with INTEGRAL, RXTE and Suzaku. First results
of these observations are presented, with special emphasis on the cyclotron
lines present in the X-ray spectrum of the source, as well as in the pulse
period and energy dependent pulse profiles of the source.Comment: 6 pages, Accepted for publication on PoS, Proceedings of "The Extreme
sky: Sampling the Universe above 10 keV", held in Otranto (Italy) in October
200
A 0535+26 in the August/September 2005 outburst observed by RXTE and INTEGRAL
In this Letter we present results from INTEGRAL and RXTE observations of the
spectral and timing behavior of the High Mass X-ray Binary A 0535+26 during its
August/September 2005 normal (type I) outburst with an average flux
F(5-100keV)~400mCrab. The search for cyclotron resonance scattering features
(fundamental and harmonic) is one major focus of the paper. Our analysis is
based on data from INTEGRAL and RXTE Target of Opportunity Observations
performed during the outburst. The pulse period is determined. X-ray pulse
profiles in different energy ranges are analyzed. The broad band INTEGRAL and
RXTE pulse phase averaged X-ray spectra are studied. The evolution of the
fundamental cyclotron line at different luminosities is analyzed. The pulse
period P is measured to be 103.39315(5)s at MJD 53614.5137. Two absorption
features are detected in the phase averaged spectra at E_1~45keV and
E_2~100keV. These can be interpreted as the fundamental cyclotron resonance
scattering feature and its first harmonic and therefore the magnetic field can
be estimated to be B~4x10^12G.Comment: 4 pages, 5 figures, accepted for publication in A&A Letter
Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis
Objectives. To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients. Methods. Plasma levels of the S100A4 protein were analysed in 40 anti-TNF-alpha naive patients with active RA. Of the 40 patients, 25 were treated with adalimumab and monitored over time. The conformational form of S100A4 was analysed using size-exclusion gel chromatography. TNF-alpha mRNA expression and protein synthesis were analysed by RT-PCR and ELISA, respectively. Results. Baseline levels of S100A4 were significantly correlated with disease activity in RA patients (r = 0.41; P < 0.01). After 12 weeks of treatment with adalimumab, there was an obvious shift in the conformations of S100A4 from the multimeric to the dimeric forms, whereas the total levels of the S100A4 protein remained unchanged. This suggests that the bioactive (multimer) S100A4 may decline in response to successful treatment with adalimumab. In addition, we showed significant up-regulation of TNF-alpha mRNA (P < 0.01), and protein release to the cell culture medium of monocytes stimulated with the S100A4 multimer compared with those treated with the dimer and to the unstimulated monocytes (P < 0.001). Conclusions. This is the first study to show that the levels of the S100A4 protein are correlated with RA disease activity. Furthermore, only the bioactive form, but not the total amount of S100A4, decreases after successful TNF-alpha blocking therapy in patients with RA. These data support an important role for the S100A4 multimer in the pathogenesis of R
The pre-outburst flare of the A 0535+26 August/September 2005 outburst
We study the spectral and temporal behavior of the High Mass X-ray Binary A
0535+26 during a `pre-outburst flare' which took place ~5 d before the peak of
a normal (type I) outburst in August/September 2005. We compare the studied
behavior with that observed during the outburst. We analyse RXTE observations
that monitored A 0535+26 during the outburst. We complete spectral and timing
analyses of the data. We study the evolution of the pulse period, present
energy-dependent pulse profiles both at the initial pre-outburst flare and
close to outburst maximum, and measure how the cyclotron resonance-scattering
feature (hereafter CRSF) evolves. We present three main results: a constant
period P=103.3960(5)s is measured until periastron passage, followed by a
spin-up with a decreasing period derivative of Pdot=(-1.69+/-0.04)x10^(-8)s/s
at MJD 53618, and P remains constant again at the end of the main outburst. The
spin-up provides evidence for the existence of an accretion disk during the
normal outburst. We measure a CRSF energy of Ecyc~50kev during the pre-outburst
flare, and Ecyc~46kev during the main outburst. The pulse shape, which varies
significantly during both pre-outburst flare and main outburst, evolves
strongly with photon energy.Comment: 4 pages, 4 figures, accepted for publication in A&A Letters. To be
published in parallel to Postnov et al. 200
Genetic stratigraphy of the Fort Scott Limestone (Pennsylvanian, Desmoinesian), southeastern Kansas
The punctuated aggradational cycle (PAC) approach of Anderson and Goodwin (1980) and transgressive-regressive units of Busch and Rollins (1984) were used to differentiate small-scale [1-3 m (3.3-10 ft) thick] genetic units in strata of the 9+-m-thick (30+-ft-thick) Fort Scott Limestone (Marmaton Group, Desmoinesian Stage, Middle Pennsylvanian Series) of southeastern Kansas, northeastern Oklahoma, and west-central Missouri. Nine outcrop exposures were observed directly, and information from 20 stratigraphic sections was taken from the literature. The lithologic sequence of the Marmaton Group is similar to cyclothems of the Illinois basin, and thus the genesis of coal is important. Many recent studies have interpreted midcontinent sedimentary strata using Heckel's (1977) model of the basic Kansas cyclothem, which emphasizes a lithostratigraphic approach. The PAC hypothesis is a genetic approach that provides a chronostratigraphic framework for interpreting the strata, reveals a more detailed sea-level history compared to the cyclothem approach, and provides more details for inferring the paleotopography, structural controls, paleogeography and paleoclimatology of the interval. We have identified four (possibly five) sixth-order cycles (Brett et al., 1990) or PACs (Goodwin and Anderson, 1985), which include as many flooding surfaces, in an interval previously interpreted as one cyclothem [the upper Fort Scott cyclothem of Knight (1985)]. These PACs can be traced and correlated throughout the outcrop area, a distance of over 300 km (190 mi), and are similar to small-scale cycles recognized by others in the Triassic of Italy and in the Silurian-Devonian sequence of New York. Recognition and correlation of sixth-order cycles (Brett et al., 1990) or PACs is of value to sedimentary modelers because the more detailed relative sea-level curves and finer scale stratigraphic details will result in better defined parameters, such as sedimentation rates, magnitudes of sea-level changes, and climatic perturbations
Genetic stratigraphy of the Fort Scott Limestone (Pennsylvanian, Desmoinesian), southeastern Kansas
The punctuated aggradational cycle (PAC) approach of Anderson and Goodwin (1980) and transgressive-regressive units of Busch and Rollins (1984) were used to differentiate small-scale [1-3 m (3.3-10 ft) thick] genetic units in strata of the 9+-m-thick (30+-ft-thick) Fort Scott Limestone (Marmaton Group, Desmoinesian Stage, Middle Pennsylvanian Series) of southeastern Kansas, northeastern Oklahoma, and west-central Missouri. Nine outcrop exposures were observed directly, and information from 20 stratigraphic sections was taken from the literature. The lithologic sequence of the Marmaton Group is similar to cyclothems of the Illinois basin, and thus the genesis of coal is important. Many recent studies have interpreted midcontinent sedimentary strata using Heckel's (1977) model of the basic Kansas cyclothem, which emphasizes a lithostratigraphic approach. The PAC hypothesis is a genetic approach that provides a chronostratigraphic framework for interpreting the strata, reveals a more detailed sea-level history compared to the cyclothem approach, and provides more details for inferring the paleotopography, structural controls, paleogeography and paleoclimatology of the interval. We have identified four (possibly five) sixth-order cycles (Brett et al., 1990) or PACs (Goodwin and Anderson, 1985), which include as many flooding surfaces, in an interval previously interpreted as one cyclothem [the upper Fort Scott cyclothem of Knight (1985)]. These PACs can be traced and correlated throughout the outcrop area, a distance of over 300 km (190 mi), and are similar to small-scale cycles recognized by others in the Triassic of Italy and in the Silurian-Devonian sequence of New York. Recognition and correlation of sixth-order cycles (Brett et al., 1990) or PACs is of value to sedimentary modelers because the more detailed relative sea-level curves and finer scale stratigraphic details will result in better defined parameters, such as sedimentation rates, magnitudes of sea-level changes, and climatic perturbations
A Double-peaked Outburst of A 0535+26 Observed with INTEGRAL, RXTE, and Suzaku
The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of ~450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotron line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst
- …
