
A&A 480, L17–L20 (2008)
DOI: 10.1051/0004-6361:20079310
c© ESO 2008

Astronomy
&

Astrophysics

Letter to the Editor

The pre-outburst flare of the A 0535+26
August/September 2005 outburst�

I. Caballero1, A. Santangelo1, P. Kretschmar2, R. Staubert1, K. Postnov1,3, D. Klochkov1, A. Camero-Arranz4,
M. H. Finger5, I. Kreykenbohm1,6, K. Pottschmidt7,8, R. E. Rothschild9, S. Suchy9, J .Wilms10, and C. A. Wilson5

1 Institut für Astronomie und Astrophysik, Sand 1, 72076 Tübingen, Germany
e-mail: isabel@astro.uni-tuebingen.de

2 ISOC, European Space Astronomy Centre (ESAC), PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
3 Sternberg Astronomical Institute, 119999 Moscow, Russia
4 GACE, Instituto de Ciencias de los Materiales, Universidad de Valencia, PO Box 20085, 46071 Valencia, Spain
5 National Space Science and Technology Center, 320 Sparkman Drive NW, Huntsville, AL 35805, USA
6 ISDC, 16 Ch. d’Écogia, 1290 Versoix, Switzerland
7 CRESST, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
8 NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771, USA
9 CASS, University of California at San Diego, La Jolla, CA 92093-0424, USA

10 Dr. Remeis-Sternwarte, Astronomisches Institut der Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany

Received 21 December 2007 / Accepted 8 January 2008

ABSTRACT

Aims. We study the spectral and temporal behavior of the High Mass X-ray Binary A 0535+26 during a “pre-outburst flare” which
took place ∼5 d before the peak of a normal (type I) outburst in August/September 2005. We compare the studied behavior with that
observed during the outburst.
Methods. We analyse RXTE observations that monitored A 0535+26 during the outburst. We complete spectral and timing analyses
of the data. We study the evolution of the pulse period, present energy-dependent pulse profiles both at the initial pre-outburst flare
and close to outburst maximum, and measure how the cyclotron resonance-scattering feature (hereafter CRSF) evolves.
Results. We present three main results: a constant period P = 103.3960(5) s is measured until periastron passage, followed by a
spin-up with a decreasing period derivative of Ṗ = (−1.69 ±0.04) ×10−8 s s−1 at MJD 53 618, and P remains constant again at the end
of the main outburst. The spin-up provides evidence for the existence of an accretion disk during the normal outburst. We measure
a CRSF energy of Ecyc ∼ 50 keV during the pre-outburst flare, and Ecyc ∼ 46 keV during the main outburst. The pulse shape, which
varies significantly during both pre-outburst flare and main outburst, evolves strongly with photon energy.
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1. Introduction

The Be/X-ray binary A 0535+261 is a transient source, char-
acterized by quiescent states with X-ray luminosity LX <∼
1036 erg s−1, interrupted by normal (type I) outbursts, asso-
ciated in general with periaston passage, when a luminosity
LX ∼ 1036−37 erg s−1 is reached, and giant (type II) outbursts
for which LX > 1037 erg s−1. A 0535+26 was discovered by
Rosenberg et al. (1975) during a giant outburst of luminosity
level of L(3−7 keV) ∼ 1.2× 1037 erg s−1. Since then, five giant out-
bursts have been detected in October 1980 (Nagase et al. 1982),
June 1983 (Sembay et al. 1990), March/April 1989 (Makino
et al. 1989), February 1994 (Finger et al. 1994), and May/
June 2005 (Tueller et al. 2005). Following the giant outburst
in May/June 2005, two normal outbursts occurred in August/
September 2005 (Finger 2005b) and December 2005 (Finger
2005a).

The source A 0535+26 is in a binary orbit, with an
O9.7IIIe optical companion HDE 245770 (Giangrande et al.
1980), of orbital period Porb = 110.3 ± 0.3 days and

� Table 2 is only available in electronic form at
http://www.aanda.org
1 Referred to as 1A 0535+262 in SIMBAD.

eccentricity e = 0.47 ± 0.02 (Finger et al. 1994). The estimated
distance of the system is 2 kpc (Steele et al. 1998). The mea-
sured pulse period of the neutron star at MJD 53 614.5137 is
P = 103.39315(5) s (Caballero et al. 2007). During quiescence
a spin-down trend of the neutron star has been reported (Finger
et al. 1996; Hill et al. 2007), and during giant outbursts the neu-
tron star shows a strong spin-up. In the June 1983 giant outburst,
a spin-up of ν̇ ∼ 0.6× 10−11 Hz s−1 was measured (Sembay et al.
1990). In the February 1994 giant outburst the spin-up reached
ν̇ ∼ 1.2 × 10−11 Hz s−1 and quasi periodic oscillations were
present, confirming the presence of an accretion disk (Finger
et al. 1996).

The X-ray spectrum of A 0535+26 is typically described
by a phenomenological model consisting of a power law with
an exponential cutoff. Two absorption like features, interpreted
as cyclotron resonance scattering features CRSFs (fundamen-
tal and first harmonic), have been observed in the spectrum at
∼45 keV and ∼100 keV (Kendziorra et al. 1994; Grove et al.
1995). Recent observations during the August/September 2005
normal outburst with INTEGRAL and RXTE (Kretschmar et al.
2005; Wilson & Finger 2005; Caballero et al. 2007) and Suzaku
(Terada et al. 2006) have confirmed this result. The centroid
energy of the CRSF was measured during the main outburst at
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Fig. 1. Left axis, dotted line: ∼3–30 keV PCA mean count rate for each
available observation during the August/September 2005 outburst. Each
diamond indicates one RXTE observation. The mean was obtained av-
eraging each individual light curve. The errors shown are the sigma of
the distribution for each observation. Right axis, solid line: pulse pe-
riod evolution during the outburst. The vertical line indicates the time
of periastron.

different luminosity levels and it was not found to vary with X-
ray luminosity.

In this Letter we focus on the August/September 2005 nor-
mal outburst. At the onset of this outburst, a sharp, pre-outburst
flare is observed superimposed on the gradual increase towards
the peak flux in the main outburst. This pre-outburst flare de-
velops on a time scale of 1 day, short compared to the three-
week duration of the main outburst. As can be seen from the
light curve measured by Swift/BAT, the flare is one of several
such flares superimposed on the rising edge of the main out-
burst (see Postnov et al. 2008). The pre-outburst flare studied
here reaches a PCA flux of 810 counts s−1 PCU−1, and the max-
imum flux during the main outburst is 1005 counts s−1 PCU−1.
The spectral and timing behaviours of the source during the pre-
outburst flare appear to be different from the ones observed dur-
ing the main outburst.

2. Instruments and observations

RXTE (Bradt et al. 1993) observed A 0535+26 between 2005
August 28 and 2005 September 24 in a target of opportu-
nity observation completed as part of a campaign studying ac-
creting pulsars. We present observations from the Proportional
Counter Array PCA (2–60 keV, Jahoda et al. 1996) and from the
High Energy X-ray Timing Experiment HEXTE (20–200 keV,
Rothschild et al. 1998). A total of 44 pointed observations were
completed to monitor the outburst with a total exposure time of
∼140 ks. Figure 1 shows the PCA light curve during the out-
burst in the ∼3–30 keV range, obtained by averaging the indi-
vidual light curves of all the observations. The analysis of RXTE
data was performed with FTOOLS 6.3.1 and the spectral analy-
sis with the X-Ray Spectral Fitting Package XSPEC v11 (Arnaud
1996).

3. Timing analysis

3.1. Evolution of pulse period during the outburst

We measured the pulse period of the pulsar with high accuracy
during the outburst. For each available observation, we extracted

Table 1. Formal function decribing the pulse period during the outburst.
The reference for the third order polinomial fit is MJD 53 618. From
MJD 53 629 the period is essentially constant.

MJD MJD
53 608.70 − 53 613.02 53 613.11 − 53 629

P(s) 103.3960(5) 103.3883(5)
Ṗ(s s−1) – (−1.69 ± 0.04) × 10−8

P̈(s s−2) – (9 ± 3) × 10−15

d3P/dt3(s s−3) – (2.5 ± 0.9) × 10−20

barycentric-corrected PCA and HEXTE light curves and cor-
rected the photon arrival times for the orbital motion. We used
the orbital ephemeris from Finger et al. (1994) with the perias-
tron epoch updated to MJD 53 613.0± 1.3 (Finger et al. 2006,
2007). We then produced pulse profiles using a constant, trial
period obtained using INTEGRAL observations of the same out-
burst (Caballero et al. 2007). For both PCA and HEXTE we de-
termined a reference time in the pulse profiles, and performed a
phase-connection analysis as previously completed in Caballero
et al. (2007, see also Ferrigno et al. 2007) . As a phase reference
we selected the midpoint of a sharp edge present in the pulse
profiles, an apparently stable feature. The pulse period is ap-
proximately constant during the initial pre-outburst flare, and a
significant spin-up is measured after periastron. The period evo-
lution after periastron can be described by a third-order polyno-
mial. The results of the fit are provided in Table 1. The period at
any time during the outburst is well-described using those func-
tions, and ± 5 ms is a conservative estimate of the uncertainty.
The function describing the period evolution is plotted in Fig. 1.
It is consistent with the period measured using INTEGRAL data
within uncertainties (Caballero et al. 2007).

3.2. Pulse profile evolution during the outburst

Applying the measured period and its derivatives to fold light
curves, we studied changes in the pulse profiles between the
pre-outburst flare and the main outburst. Strong changes in the
pulse-profile shape, with photon energy, are observed for both
the main outburst and pre-outburst flare but in quite different
ways. Figure 2 shows pulse profiles from observations (a), dur-
ing the pre-outburst flare, and (b), close to the maximum of the
main outburst. Observation (b) was chosen because of its high
data quality and the pulse profiles are representative of data ac-
quired during the outburst peak. The low-energy pulse profiles in
both cases show a complex pattern, but different structures and
evolution. At higher energies both pulse profiles show a simpler
two peaked shape. During the main outburst, one of the peaks is
strongly reduced at the cyclotron energy. During the pre-outburst
flare there is a smooth evolution towards higher energies without
a change crossing the cyclotron energy. Energy-dependent pulse
profiles for all the observations during the outburst are shown in
Camero-Arranz (2007) and a detailed study will be presented in
a forthcoming paper (Camero-Arranz et al. 2007).

4. Spectral analysis

To model the phase-averaged, X-ray continuum, we have used a
phenomenological model, a power law times an exponential cut-
off (XSPEC model cutoffpl), which is the simplest capable
of reproducing the data. It is described by F(E) ∝ E−αe−E/Efold ,
where α is the photon index and Efold the folding energy. One,
and in some observations two, absorption features were included
in the model to enable an accurate description of the data. We
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Fig. 2. PCA and HEXTE background substracted pulse profiles from
one observation during the pre-periastron flare a), with L(5−50keV) ∼
0.45 × 1037 erg s−1, and from one observation near the maximum of
the outburst b), with L(5−50 keV) ∼ 0.75 × 1037 erg s−1. Two pulse cy-
cles are shown for clarity. In the upper panel the PCA light curve is
shown. The vertical lines indicate the corresponding observations. The
exposure times are 2.2 ks in a) and 12.35 ks in b).

modeled them with a Gaussian optical depth profile, which mod-
ifies the continuum in the following way: F′(E) = F(E)e−τ(E),
where τ(E) = τe−(E−Ecyc )2/(2σ2). A Gaussian emission line was
added to the model to account for the Fe Kα fluorescence line,
with energy fixed at 6.4 keV and width to 0.5 keV. Due to a
feature in the residuals around ∼4.7 keV (instrumental Xenon L
edge, see Rothschild et al. 2006), we excluded data for energies
below 5 keV in our analysis.

We performed a spectral analysis of all observations avail-
able and studied the evolution of the cyclotron-line energy and
continuum parameters during the outburst. We measured a con-
stant value for the centroid energy of the fundamental CRSF dur-
ing the main outburst, as reported by Caballero et al. (2007).
During the pre-outburst flare, the cyclotron-centroid energy is
measured at a higher value, reaching Ecyc = 52.0+1.6

−1.4 keV, com-
pared to Ecyc = 46.1+0.5

−0.5 keV during the main outburst (at 90%
confidence). To study the significance of the change, we have
produced χ2 contour plots for the observations during the flare
and during the main outburst. As an example, in Fig. 3 contour
plots are shown for the observation close to the maximum of the
main outburst labeled (b) in Fig. 2, and for the sum of the three
available observations during the pre-outburst flare. In observa-
tion (b) we included a harmonic, cyclotron line with the energy
fixed at Ecyc = 102.5 keV (it is measured at Ecyc = 102.5+4.5

−3.3 keV
at 90% confidence). We conclude from the contour plots that the
change in energy is statistically significant.

Table 2 contains the best-fit values for the three observa-
tions during the pre-outburst flare and for the sum of those
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Fig. 3. Efold vs. Ecyc (left) and σ vs. Ecyc (right) contour plots for
one observation near the maximum (dotted lines, observation (b) in
Fig. 2) and for the sum of the three available observations dur-
ing the pre-outburst flare (solid lines). The contours indicate χ2

min +
2.30(68%), 4.61(90%), 9.21(99%) levels.
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Fig. 4. First panel: PCA light curve. Second panel: fundamental CRSF
energy during the ourbusrt. Inset shows a zoom on the pre-outburst flare.
Third and forth panels: photon index and folding energy evolution.
Errors are 90% confidence for one parameter of interest (χ2

min+2.7).

observations, as well as the best-fit values for the main outburst
(observation (b) in Fig. 2).

Figure 4 shows the evolution of the CRSF energy during
the outburst, as well as the evolution of the continuum param-
eters photon index α and folding energy Efold for the observa-
tions in which the cyclotron line was detected. The continuum
parameters are quite variable at the beginning of the outburst.
The spectrum at the beginning of the flare appears to be softer,
with photon index α ∼ 1.2, and then becomes harder in the flare.
The rising of the main outburst presents a harder spectrum, with
α ∼ 0.6. The decay of the outburst shows a smooth softening of
the spectrum.

5. Summary and discussion

In this paper, we present evidence for significant changes
in the spectral and timing parameters of the Be/X-ray bi-
nary A 0535+26, during its normal outburst in August/
September 2005. Our three main results are the following:

1. The pulse period of the neutron star appears to be constant
during the pre-outburst flare, P = 103.3960(5) s, and a spin-
up starts at periastron, Ṗ = (−1.69 ± 0.04) × 10−8 s s−1 mea-
sured at MJD 53 618. The pulse period falls exponentially at
the end of the outburst.



L20 I. Caballero et al.: Pre-outburst flare of A 0535+26

2. The energy-dependent, pulse profiles during the pre-outburst
flare are significantly different from those measured for the
main outburst.

3. During the pre-outburst flare, the fundamental cyclotron-line
energy centroid reaches Ecyc = 52.0+1.6

−1.4 keV, significantly
higher than for the main outburst, Ecyc = 46.1+0.5

−0.5 keV.

This is the first observation of a normal outburst that measures a
spin-up rate for A 0535+26, providing evidence that an accretion
disk is being detected during a type I outburst. The measured
spin-up Ṗ = (−1.69 ± 0.04) × 10−8 s s−1, or ν̇ = (1.58 ± 0.04) ×
10−12 Hz s−1, is smaller than the spin-up measured during giant
outbursts in the past, e.g., ν̇ ∼ 0.6 × 10−11 Hz s−1 in June 1983
(Sembay et al. 1990), or ν̇ ∼ 1.2×10−11 Hz s−1 in February 1994
(Finger et al. 1996).

The pulse profiles measured during the main out-
burst are consistent with those during a giant outburst
in March/April 1989 albeit at a different luminosity level,
L(23−53 keV) ∼ 1.26 × 1037 erg s−1 (Kendziorra et al. 1994). A
comparison between these pulse profiles and those obtained for
the pre-outburst flare in this paper suggest that a different mode
of accretion takes place during the flare (see Postnov et al. 2008).

The energy of the CRSF during the main outburst is con-
sistent with the energy measured with INTEGRAL close to the
maximum of the main outburst, Ecyc = 45.9±0.3 keV (Caballero
et al. 2007) and with the energy measured with Suzaku at the
end of the main outburst, Ecyc = 46.3+1.5

−1.3 keV (using the same
Gaussian model for the line, Terada et al. 2006). From the ob-
served cyclotron energy, the estimated, magnetic field at the site
of the X-ray emission during the main outburst, assuming a red-
shift of z = 0.3, is B ∼ 5.2 × 1012 G, and during the pre-outburst
flare B ∼ 5.8 × 1012 G. During the main part of the outburst the
cyclotron-line energy remains constant within the errors, in spite
of the changes in the luminosity. This suggests that the structure
of the accretion column is different from that observed in both
V 0332 +53 (Mowlavi et al. 2006) and 4U 0115+63 (Tsygankov
et al. 2006). The source is likely to be in the sub-Eddington
regime, as for Her X-1 (Staubert et al. 2007) for which it is be-
lieved no shock has formed in the accretion column.

Pre-outburst flares have been observed in other accret-
ing pulsars, such as 2S 1845-024 (Finger et al. 1999) and
EXO 2030+375 (Camero-Arranz et al. 2005).

Hayasaki & Okazaki (2006) have modeled accretion disks
around neutron stars in Be/X-ray binaries. Their SPH simula-
tions reproduce a series of normal outbursts from the accretion
disk formed about the neutron star at periastron. In some cases,
single flares are found preceding the outburst maximum. We
note first of all that the timescale of the flare in their simula-
tions appears to be too long (10% of the orbital period) compared
to the flare duration observed. The inspection of the Swift-BAT
light-curve of A0535+26 during the outburst studied here shows
that RXTE actually observed only one of a collection of short
flares in the rising part of the outburst (Postnov et al. 2008). Such
flares are not reproduced by the above simulations. This model
does not take into account the disk-magnetospheric interaction.

A more plausible interpretation is that the pre-outburst flares
could be caused by magnetospheric instabilities between the ac-
cretion disk and the neutron-star magnetosphere at the onset of
accretion. The instability causes the plasma that has accumulated
in the disk-magnetosphere, boundary-layer to rapidly fall onto
the neutron star surface close to the magnetic poles, but along
different field lines than (quasi)stationary accretion (see Postnov
et al. 2008, for details).
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Table 2. Best-fit values for the available observations during the pre-outburst flare, where the CRSF energy is measured at a higher position, for
the sum of the observations during the flare, and for one observation close to the maximum of the main outburst. L is the luminosity in units of
1037 erg s−1 in the 5−50 keV range. Errors are 90% confidence for one parameter of interest (χ2

min + 2.7).

Obs. ID Ecyc(keV) σ(keV) τ Efold(keV) α MJD start Exp. (ks) L χ2
red/d.o.f.

91086-01-03-01 48.3+1.1
−1.0 6.4+1.0

−1.0 0.27+0.03
−0.03 18.2+0.4

−0.4 0.73+0.02
−0.02 53 610.599 1.152 0.85 1.19/170

91086-01-03-02 50.2+1.8
−1.6 8.7+1.4

−1.3 0.57+0.08
−0.08 18.8+1.0

−1.0 0.91+0.04
−0.04 53 610.665 2.208 0.45 0.88/170

91086-01-03-03 52.0+1.6
−1.4 10.8+1.3

−1.1 0.53+0.06
−0.06 19.2+0.8

−0.7 0.83+0.03
−0.03 53 610.729 2.560 0.57 0.90/170

sum 49.9+0.8
−0.8 8.6+0.7

−0.7 0.40+0.03
−0.03 18.3+0.4

−0.4 0.77+0.02
−0.02 53 610.599 5.920 0.66 1.18/220

91085-01-01-03 46.1+0.5
−0.5 10.1+0.5

−0.5 0.47+0.03
−0.02 18.0+0.4

−0.3 0.59+0.02
−0.02 53 614.7 12.352 0.75 1.19/214

102.5 8.4+2.2
−1.9 1.0+0.4

−0.2 (1st harmonic)
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