141 research outputs found

    Cell sizing of intact, flash-frozen adipose tissue

    Get PDF
    Histomorphometric analyses of adipose tissue usually require formalin fixation of fresh samples. Our objective was to determine if intact, flash-frozen whole adipose tissue samples stored at − 80 °C could be used for measurements developed for fresh-fixed adipose tissues. Portions of adipose tissue samples were either formalin-fixed immediately upon sampling or flash-frozen and stored at − 80 °C and then formalin-fixed during the thawing process. Mean adipocyte diameter was measured. Immunohistochemistry was performed on additional samples to identify macrophage subtypes (M1, CD14 + and M2, CD206 +) and total (CD68 +) number. All slides were counterstained using haematoxylin and eosin (H&E). Visual inspection of H&E-stained adipose tissue slides performed in a blinded fashion showed little or no sign of cell breakage in 74% of frozen-fixed samples and in 68% of fresh-fixed samples (p > 0.5). There was no difference in the distribution frequencies of adipocyte sizes in fresh-fixed vs. frozen-fixed tissues in both depots (p > 0.9). Mean adipocyte size from frozen-fixed samples correlated significantly and positively with adipocyte size from fresh-fixed samples (r = 0.74, p < 0.0001, for both depots). The quality of staining/immunostaining and appearance of tissue architecture were comparable in fresh-fixed vs. frozen-fixed samples. In conclusion, intact flash-frozen adipose tissue samples stored at − 80 °C can be used to perform techniques conventionally applied to fresh-fixed samples. This approach allows for retrospective studies with frozen human adipose tissue samples

    Assessing the blank carbon contribution, isotope mass balance, and kinetic isotope fractionation of the Ramped Pyrolysis/Oxidation instrument at NOSAMS

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Radiocarbon 59 (2017): 179-193, doi:10.1017/RDC.2017.3.We estimate the blank carbon mass over the course of a typical Ramped PyrOx (RPO) analysis (150 to 1000 °C; 5 °C×min-1) to be (3.7 ± 0.6) μg C with an Fm value of 0.555 ± 0.042 and a δ13C value of (-29.0 ± 0.1) ‰ VPDB. Additionally, we provide equations for RPO Fm and δ13C blank corrections, including associated error propagation. By comparing RPO mass-weighted mean and independently measured bulk δ13C values for a compilation of environmental samples and standard reference materials (SRMs), we observe a small yet consistent 13C depletion within the RPO instrument (mean – bulk: μ = -0.8 ‰; ±1σ = 0.9 ‰; n = 66). In contrast, because they are fractionation-corrected by definition, mass-weighted mean Fm values accurately match bulk measurements (mean – bulk: μ = 0.005; ±1σ = 0.014; n = 36). Lastly, we show there exists no significant intra-sample δ13C variability across carbonate SRM peaks, indicating minimal mass-dependent kinetic isotope fractionation during RPO analysis. These data are best explained by a difference in activation energy between 13C- and 12C-containing compounds (13–12ΔE) of 0.3 to 1.8 J×mol-1, indicating that blank and mass-balance corrected RPO δ13C values accurately retain carbon source isotope signals to within 1 to 2‰.J.D.H. was partly supported by the NSF Graduate Research Fellowship Program under grant number 2012126152; V.V.G. was partly supported by the US National Science Foundation (grants OCE- 0851015 and OCE-0928582), the WHOI Coastal Ocean Institute (grant 27040213) and an Independent Study Award (grant 27005306) from WHOI; G.S. and P.K.Z. were supported by the WHOI Postdoctoral Scholar Program with funding provided by NOSAMS (OCE-1239667)

    Understanding and simulating the material behavior during multi-particle irradiations

    Get PDF
    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems

    The Spider Effect: Morphological and Orienting Classification of Microglia in Response to Stimuli in Vivo

    Get PDF
    The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells

    Changes in calcium dynamics following the reversal of the sodium-calcium exchanger have a key role in AMPA receptor-mediated neurodegeneration via calpain activation in hippocampal neurons

    Get PDF
    Proteolytic cleavage of the Na(+)/Ca(2+) exchanger (NCX) by calpains impairs calcium homeostasis, leading to a delayed calcium overload and excitotoxic cell death. However, it is not known whether reversal of the exchanger contributes to activate calpains and trigger neuronal death. We investigated the role of the reversal of the NCX in Ca(2+) dynamics, calpain activation and cell viability, in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-stimulated hippocampal neurons. Selective overactivation of AMPA receptors caused the reversal of the NCX, which accounted for approximately 30% of the rise in intracellular free calcium concentration ([Ca(2+)](i)). The NCX reverse-mode inhibitor, 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943), partially inhibited the initial increase in [Ca(2+)](i), and prevented a delayed increase in [Ca(2+)](i). In parallel, overactivation of AMPA receptors strongly activated calpains and led to the proteolysis of NCX3. KB-R7943 prevented calpain activation, cleavage of NCX3 and was neuroprotective. Silencing of NCX3 reduced Ca(2+) uptake, calpain activation and was neuroprotective. Our data show for the first time that NCX reversal is an early event following AMPA receptor stimulation and is linked to the activation of calpains. Since calpain activation subsequently inactivates NCX, causing a secondary Ca(2+) entry, NCX may be viewed as a new suicide substrate operating in a Ca(2+)-dependent loop that triggers cell death and as a target for neuroprotectio

    An Interspecific Nicotiana Hybrid as a Useful and Cost-Effective Platform for Production of Animal Vaccines

    Get PDF
    The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs

    Non-parametric class completeness estimators for collaborative knowledge graphs — the case of wikidata

    Get PDF
    Collaborative Knowledge Graph platforms allow humans and automated scripts to collaborate in creating, updating and interlinking entities and facts. To ensure both the completeness of the data as well as a uniform coverage of the different topics, it is crucial to identify underrepresented classes in the Knowledge Graph. In this paper, we tackle this problem by developing statistical techniques for class cardinality estimation in collaborative Knowledge Graph platforms. Our method is able to estimate the completeness of a class—as defined by a schema or ontology—hence can be used to answer questions such as “Does the knowledge base have a complete list of all {Beer Brands—Volcanos—Video Game Consoles}?” As a use-case, we focus on Wikidata, which poses unique challenges in terms of the size of its ontology, the number of users actively populating its graph, and its extremely dynamic nature. Our techniques are derived from species estimation and data-management methodologies, and are applied to the case of graphs and collaborative editing. In our empirical evaluation, we observe that i) the number and frequency of unique class instances drastically influence the performance of an estimator, ii) bursts of inserts cause some estimators to overestimate the true size of the class if they are not properly handled, and iii) one can effectively measure the convergence of a class towards its true size by considering the stability of an estimator against the number of available instances

    Genes Involved in the Balance between Neuronal Survival and Death during Inflammation

    Get PDF
    Glucocorticoids are potent regulators of the innate immune response, and alteration in this inhibitory feedback has detrimental consequences for the neural tissue. This study profiled and investigated functionally candidate genes mediating this switch between cell survival and death during an acute inflammatory reaction subsequent to the absence of glucocorticoid signaling. Oligonucleotide microarray analysis revealed that following lipopolysaccharide (LPS) intracerebral administration at striatum level, more modulated genes presented transcription impairment than exacerbation upon glucocorticoid receptor blockage. Among impaired genes we identified ceruloplasmin (Cp), which plays a key role in iron metabolism and is implicated in a neurodegenative disease. Microglial and endothelial induction of Cp is a natural neuroprotective mechanism during inflammation, because Cp-deficient mice exhibited increased iron accumulation and demyelination when exposed to LPS and neurovascular reactivity to pneumococcal meningitis. This study has identified genes that can play a critical role in programming the innate immune response, helping to clarify the mechanisms leading to protection or damage during inflammatory conditions in the CNS

    School dropout, problem behaviour and poor academic achievement : a longitudinal view of portuguese male offenders

    Get PDF
    This study examines school drop outs from the perspective of male adults themselves through interviews with offenders currently serving sentences. Participants were 10 Portuguese male inmates, between the ages of 19 and 46 years of age, incarcerated in two prison facilities of the Azores. Qualitative and interpretative methods were carried out using a semi-structured in-depth individual interview that was audiorecorded and conducted on the basis of a list of topics. Interview transcripts and thematic analysis were used in data treatment and analysis. The findings primarily indicate that poor academic achievement and emotional and behavioural difficulties of participants played a particular role in early school drop out. The trajectories these individuals followed within the education system presented problem behaviour, learning disabilities, and/or foster care interventions. While school drop out circumstances were apparently various, analysis showed that they were underpinned by three distinct sets of conditions generally not addressed by the education system. The analysis of the triggering factors and the maintenance dynamics of school drop outs indicated three distinct types: retention/absenteeism, life turning points and positive resolution. Implications for secondary prevention and screening practices are discussed.FCT (SFRH/ BD/ 44245/ 2008)CIEC - unidade de investigação 317 da FC
    corecore