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Abstract. Collaborative Knowledge Graph platforms allow humans
and automated scripts to collaborate in creating, updating and
interlinking entities and facts. To ensure both the completeness of the
data as well as a uniform coverage of the different topics, it is crucial
to identify underrepresented classes in the Knowledge Graph. In this
paper, we tackle this problem by developing statistical techniques
for class cardinality estimation in collaborative Knowledge Graph
platforms. Our method is able to estimate the completeness of a
class—as defined by a schema or ontology—hence can be used to answer
questions such as “Does the knowledge base have a complete list of all
{Beer Brands—Volcanos—Video Game Consoles}?” As a use-case, we
focus on Wikidata, which poses unique challenges in terms of the size
of its ontology, the number of users actively populating its graph, and
its extremely dynamic nature. Our techniques are derived from species
estimation and data-management methodologies, and are applied to the
case of graphs and collaborative editing. In our empirical evaluation,
we observe that i) the number and frequency of unique class instances
drastically influence the performance of an estimator, ii) bursts of
inserts cause some estimators to overestimate the true size of the class if
they are not properly handled, and iii) one can effectively measure the
convergence of a class towards its true size by considering the stability
of an estimator against the number of available instances.

Keywords: Knowledge Graph · Class Completeness · Class Cardinality
· Estimators · Edit History

1 Introduction

Knowledge Graphs (KGs) play a critical role in several tasks including speech
recognition, entity linking, relation extraction, semantic search, or fact-checking.
Wikidata [20] is a free KG that is collaboratively curated and maintained by a
large community of thousands of volunteers. With currently more than 55M data
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items and over 5.4K distinct properties that help describe these data items, Wiki-
data is the bridge between many Wikimedia projects (e.g., Wikipedia, Wikime-
dia Commons, and Wiktionary), as well as the interlinking hub of many other
Linked Data sources. Its data is consumed by end-user applications such as
Google Search, Siri, and applications to browse scholarly information5.

Being a collaborative, crowdsourced effort, Wikidata’s data is highly dy-
namic. Editors can create items individually (e. g. a new instance representing
a natural disaster that just happened), or in bulk (e. g. importing data about all
the pieces of art in a city) about any topic that satisfies the notability criteria
defined by the community6. The open curation process leads to a KG evolving
dynamically and at various speeds. While such a process is beneficial for data
diversity and freshness, it does not guarantee the total (or even partial) complete-
ness of the data. Given that previous research has shown that data consumers
identify completeness as one of the key data quality dimensions [22], together
with accuracy and freshness, it is of utmost importance to provide mechanisms
to measure and foster data completeness in collaborative KGs.

In that context, the Wikidata community has already endorsed a series of
initiatives and tools that encourage efforts towards population completeness [24].
For instance, there are WikiProjects7 that aim at populating Wikidata with
bibliographic references, genes, or notable women.

With such a decentralized approach of independently-run data entry and im-
port efforts, it has become very difficult to understand and measure what is still
missing in Wikidata. While there is related work that measures the complete-
ness of item descriptions in Wikidata (see Section 2), there is (to the best of our
knowledge) no systematic approach to measure class completeness other than
by manually checking for candidate entities and facts to be inserted in the KG.

In this paper, we focus on the specific problem of estimating class com-
pleteness in a collaborative KG and experimentally evaluate our methods over
Wikidata. We limit our work to the family of finite classes, where the number of
instances in such classes is fixed. We take a data-driven approach to that prob-
lem by leveraging models from statistics and ecology used to estimate the size of
species [4]. We propose methods to calculate the cardinality of classes and build
estimates for the class convergence to the true value. We note that while we
focus our empirical study on Wikidata, our proposed methodology is applicable
to any other collaborative graph dataset with analogous characteristics, where
the action log describing its evolution is available. By calculating the expected
class cardinality, we are able to measure class completeness given the number
of instances currently present in the KG for that class. We evaluate different
class size estimation methods against classes whose sizes are known through
trustworthy third-party sources (e.g., the number of municipalities in the Czech
Republic) and for which a complete ground truth exists. We then apply these

5 Scholia https://tools.wmflabs.org/scholia/
6 Wikidata’s Notability https://www.wikidata.org/wiki/Wikidata:Notability
7 Wikidata WikiProjects https://www.wikidata.org/wiki/Wikidata:WikiProjects
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methods to other classes in order to generate completeness estimates for other
parts of the KG.

The main contributions of this paper are as follows:

– We show how the edit history of a KG can be used to inform statistical
methods adapted from species estimators (Section 3);

– We evaluate the effectiveness of statistical methods to estimate the class size
and KG completeness based on repeated sampling (Section 4);

– We provide tools to make Wikidata end-users (both human and applications)
aware of the incompleteness of many subparts in Wikidata (Section 4.4).

2 Related Work

Data Completeness In Knowledge Graphs is one of the most important data
quality dimensions for Linked Data [24]; it has also been acknowledged as a
key data quality indicator by the Wikidata community8. Different data cleaning
methods proposed by the research community have focused on different types of
completeness. For example, ReCoin [1] measures the relative completeness that
item descriptions have, compared to other items of the same type. It keeps track
of used properties and encourages editors to add new statements and foster more
homogeneous item descriptions. Galárraga et al. [9] investigate different signals
to predict the completeness of relations in KGs. The work of Soulet et al. [17]
introduces a method to estimate the lower bound of completeness in a KG.
The completeness is estimated through the missing facts to reach a distribution
according to Benfords Law. Kaffee et al. [12] study label completeness across
languages. The work by Wulczyn et al. [23] encourages Wikipedia editors to write
different language versions of existing articles. Tanon et al. [18] uses association
rules to identify missing statements, while Darari et al. [6] provide means to
describe and reason over RDF statement completeness. To complement these
methods, in this paper we consider the problem of class completeness in the KG.

Cardinality Estimation In Databases Estimating the cardinality of a table in
relational databases is key to query performance optimization. This requires a
combination of database technology and statistical methods and allows to com-
pute the cost of database operations that are then used for optimization strate-
gies (e.g., storage allocation and data distribution) [13]. Similarly, cardinality
estimation is key to optimize query execution in RDF triplestores. The key dif-
ference with relational databases is the presence of many self-joins in queries over
RDF data. This requires custom cardinality estimation techniques for SPARQL
queries over RDF data [14]. In distributed databases, cardinality estimation is
also a necessary step to optimize query execution. The key aspect is estimating
the size of non-materialized views in a way that is accurate and provides statis-
tical bounds [15]. Our work addresses the different problem of determining the
cardinality of a class in a KG leveraging its edit history.

8 Wikidata Quality RFC https://www.wikidata.org/wiki/Wikidata:Requests_

for_comment/Data_quality_framework_for_Wikidata
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Data Completeness in Crowdsourcing The problem of counting items and indi-
viduals also arises in a crowdsourcing setting. Previous work [7] developed mod-
els to estimate the size of the crowd in Amazon MTurk by taking into account
the propensity of a worker to participate in an online survey or micro-tasks,
respectively. That work used capture-recapture, a technique based on repeated
observations of the same worker participating in tasks. In our class size estima-
tion method, we estimate the size of data (not crowds) based on observations
made through another form of crowdsourcing, i.e., volunteering.

In a similar setting, Trushkowsky et al. [19] tackled the problem of enumer-
ating the list of all instances in a specific class through paid crowdsourcing. The
crowd workers were explicitly asked to provide a list of distinct items, for ex-
ample, “input the list of all ice cream flavors”. Similar to our work, the authors
used capture-recapture techniques but also had to deal with aspects unique to
a crowdsourcing environment. For instance, they introduced a “pay-as-you-go”
method to estimate the cost-benefit ratio of crowdsourcing additional tasks to
complement the current list. They looked at both open-world and closed-world
assumptions where the cardinality of the set is either known (e.g., “list of US
states”) or unknown and possibly unbounded (e.g, “ice cream flavors”). Their
methods are based on techniques borrowed from ecology research to count the
number of animals of a certain species, which we describe next.

Species Richness Methods In the field of ecology and bio-statistics, several
capture-recapture techniques have been proposed to estimate the number of
existing species [2, 21]. The idea of capture-recapture is to draw a sample at
random from a population and to estimate the number of unobserved items
based on the frequency of the observed items. Such approaches work well for
closed populations, but different techniques are required when we allow for
open populations. Open vs. closed population problems have fundamentally
different questions to answer. The former focus on estimating the rates of
arrival and departure, the latter is about size and propensity of capture.
We restrict our work to the realm of closed classes since it was shown that
if a closed population method is utilized when in fact there is a process of
arrival/departure, then closed estimators tend to overestimate. For example,
the open-world-safe estimator “Chao92” [4] provides more accurate estimations
when more evidence is available from a class. We present our results based on
this and other estimators in Section 4.

In our work, we look at the problem of estimating the size of a given class
(e.g., Volcanos) or composite classes (e.g., Paintings drawn by Vincent van Gogh)
in Wikidata. We tap into the edit patterns of Wikidata volunteers [16], and apply
capture-recapture techniques to estimate the completeness of a given class.
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3 Class Completeness Estimators

In this section, we introduce the family of estimators we leverage to tackle the
class estimation problem in collaborative KGs. First, we introduce the problem
statement and the assumptions that we make in the context of Wikidata by
defining the notion of class in Wikidata. Next, we introduce several statistical
estimators ordered by complexity and show how they build upon each other.
In this paper, we refer to entities as all the instances of a particular class e.g.,
“Cathedrals in Mexico”.

3.1 Problem Definition

Given a finite class C of instances IC = {I1, ..., IN}, our goal is to estimate
the number of instances of C i.e., N = |IC |. We note D the current count of
instances of a given class in the knowledge graph. A class is complete once D is
equal to the true class size N .

The capture-recapture data collection protocol that we follow is based on
n observations recorded during k successive sample periods. Each observation
relates to a direct or indirect change made to an instance of a specific class
during the sample period (i.e., one month). In practice, we extract mentions
from the edits in the knowledge graph. An edit is a change that either adds,
modifies or deletes a statement involving one or more entities. Every reference
of an entity in the subject or object position of a statement defines a mention
for the class that the mentioned entity belongs to. In the end, each mention is
composed of an entity (also called instance because it belongs to a class), the
class the instance belongs to, and a timestamp.

3.2 Interpreting Edit Activity Related to Classes

Given the edit history of a KG, we extract mentions as described in Listing 1.1:
For every edit, we create a mention if one of the entities referenced belongs to a
class. This is done on a per class basis.

Listing 1.1. Query on the Wikidata Graph illustrating the relation between edits and
mentions on the example of the Single Domain class City (Q515). (The properties
referenced with the edit prefix are not available in the public Wikidata endpoint.)

SELECT ?instance ?timestamp

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515.

{ ?mention edit:subject ?instance. }

UNION

{ ?mention edit:object ?instance. }

?mention edit:timestamp ?timestamp.

}

We show in Figure 1 how the mentions get aggregated per sample period
on the overall timeline. In a given sample period, we count one observation
per instance having at least one mention. With Xi being the frequency of
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Timeline

{Sample Period

E3: Brandenburg Gate country Germany

E1: Eiffel Tower country France

E4: Paris owner Eiffel Tower

E6: Germany capital Berlin 

E5: C.G. Langhans notable work Brandenburg Gate

E2: Eiffel Tower architect S. Sauvestre

Sample #3
Feb ‘19

Sample #4
Mar ‘19

Sample #5
Apr ‘19

Sample #6
Jun ‘19

Sample #7
Jul ‘19

… …

m1

m2

Fig. 1. The edits (Ei) of the Knowledge Graph (representing new edges) are leveraged
to identify mentions. The source and target of each edge are collected to create a
mention from the entity involved. Sample period #4 contains 3 edits, in which we
identify 6 mentions, from which we extract 2 observations for class monument (despite
the 3 mentions of entities of that class because m1 and m2 are only counted once), 1
observation for class country, 1 observation for class city and 1 observation for class
person.

observations relating to instance Ii, we compute the frequency of frequencies
fi =

∑N
j=1 1[Xj = i], for 1 ≤ i ≤ k. For example, f1 is the number of instances

observed only once (singletons), f2 is the number of instances observed twice
(doubletons) etc. With this notation, f0 represents the number of instances that
we never observed and we seek to estimate. Each instance Ii ∈ IC of a given
class has a unique probability pi of being mentioned, with

∑
pi = 1.

To be able to leverage the statistical techniques described below, the dis-
tribution of classes among the observations is supposed to follow a stationary
multinomial distribution with unknown parameter p1, ..., pN . This leads to the
following assumptions:

1. The classes of interest are closed and countable as of the beginning of the
experiment;

2. The observations are independent events;
3. In a class, the observations are at random and “with replacement”;
4. The probability of observing an instance within a class does not change over

time.

First, by assuming that classes are closed, we reduce the scope of the ques-
tions we can answer. Tracking the changes (growth and shrinkage) of an open
class such as “Events in Paris” or “Sitting Presidents” would require a different
approach, data, and assumptions. Second, using a large number of edits made
by different volunteers and scripts introduces a number of corner cases that we
need to work with. It is for example possible to observe dependant actions, for
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example: systematically adding “Name” followed by “Date of Birth” or editors
correcting each other. While our assumption is a simplifying one, we have not
observed any significant correlations in the edits. This stems from the fact that
the volunteers are not restricted on which edits they perform and what entities
or classes they need to focus on. The third assumption comes in contrast to
the work in [19] where crowd workers were asked to list items that belong to
a particular class. Hence, a given crowd worker is answering from a population
of possible items (i.e., sampling “without replacement”). In our case, Wikidata
editors can create edits which repeatedly mention the same entity in the context
of their work. Finally, the fourth assumption is based on the fact that the ob-
servations we make are created through indirect references and are not directly
related to the classes themselves.

3.3 Non-parametric Estimators

The intuition behind the estimators that we consider is based on the frequency
of edits involving entities of a given class. To estimate the true class size we
consider non-parametric methods that primarily use the frequencies of observa-
tions among instances. Non-parametric methods do not assume any probability
distribution of pi among the instances of a given class.

Jackknife Estimators [Jack1] Jackknife (or “leave-one-out”) methods have
been used to develop species richness estimators [11]. Similarly to k-fold cross
validation, we use observations from k−1 periods by removing observations from
one sample period from the data at a time and average the resulting pseudo-
estimates made on each sub-fold. We write f i1 to denote the instances observed
only once in period i. We note that the number of distinct elements obtained
when dropping period i becomes D−i = D − f i1.

We compute a pseudo estimate for each sub-sample of observations obtained
by dropping the i − th period using N̂−i = kD − (k − 1)D−i, and averaging
across k. A closed form of the first and second order Jackknife estimators is
given by Eq. (1) and Eq. (2) respectively [3]. We observe that N̂jack1 implies
that the number of unseen instances is approximately the same as the number
of singletons after a large number of sampling periods.

N̂jack1 = D +
k − 1

k
f1 (1)

N̂jack2 = D +
2k − 3

k
f1 −

(k − 2)2

k(k − 1)
f2 (2)

Sample Coverage and the Good-Turing Estimator [N1-UNIF] The fol-
lowing methods are based on the concept of sample coverage which is a measure
of sample completeness.

S =

N∑
pi1[Xi > 0] (3)
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Since the probabilities of observing the instances as well as the population size
are unknown, a popular estimate of the sample coverage is given by the Good-
Turing Estimator [10] Eq. (4). Effectively, this estimator relies on the comple-
ment of the ratio of singletons among the sample data and as an indicator of
true sample coverage. For example, if in past sample periods we have seen each
instance only once, the probability of observing a new instance by collecting a
new sample is 1. Conversely, if all the instances were seen more than once, i.e.,
f1 = 0 the probability of seeing a new instance in a new sample is reduced to 0.

Ŝ = 1− f1
n

(4)

If all instances have the same probability of being observed, the population
size using the Good-Turing sample coverage is given by:

N̂n1-unif =
D

Ŝ
=

D

1− f1
n

(5)

We draw the attention of the reader to the trade-off that singletons and
popular instances create. Typically, frequency counts will be heavily unbalanced
and will tend to over or under-estimate the true population size.

Singleton Outliers Reduction [SOR] To mitigate the effect of the singletons
on a class, a popular approach is to threshold the number of singleton elements.
Trushkowsky et al. [19] proposed to limit the number of singletons introduced
by a given contributor to two standard deviations above the mean of singletons
introduces by other workers. We adapt this method to our scenario by limiting
the f1 count to fall within two standard deviations above the mean. The rationale
behind our choice is to strike a balance between low and high dispersion of f1
frequencies with respect to the set F of all frequencies that we observe.

N̂SOR =
D

1− f̃1
n

(6)

with,

f̃1 = min
{
f1, 2σ + µ

}
µ =

F∑
∀j>1

fj
|F | − 1

σ =

√√√√ F∑
∀j>1

(fj − µ)2

|F | − 2

(7)

Abundance-based Coverage Estimator [Chao92] The work by Chao and
Shen [4] (hereon chao92 ) uses the concept of sample coverage introduced above
and assumes that the probabilities of capture can be summarized by their mean
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i.e., p̄ =
∑
pi/N = 1/N and their coefficient of variation (or γ) with γ2 =

[N−1
∑

i(pi − p̄i)2]/p̄2.

However, since we do not have access to the probabilities pi and N , the
coefficient of variation is in turn estimated by using N̂unif (via the Good-Turing
estimator of sample coverage), and pi’s with the observed data and corresponding
fi.

γ2 = max
{
N̂unif

k∑
i=1

i(i− 1)fi
[n(n− 1)]− 1

, 0
}

(8)

The chao92 estimator is given by Eq. (9). We note that if the coefficient
of variation is close the zero, the estimator reduces to Eq. (5) indicating an
equiprobable scenario. Conversely, as γ grows, signaling more variability in the
probabilities of capture, we add a factor proportional to the number of single-
tons to the equiprobable estimate. We note that a high estimated coefficient of
variation combined with a high number of singletons might result in significant
overestimation.

N̂chao92 =
D

Ŝ
+
n(1− Ŝ)

Ŝ
γ2 =

D + f1γ
2

Ŝ
(9)

3.4 Evaluation Metrics

We evaluate the robustness and convergence of our estimators using the following
metrics.

Error Metric To evaluate the performance of the estimators in a controlled
setting, we leverage the error metric introduced in [19]. For reference, the φ error
metric aims at capturing the bias of the estimates as the absolute distance from
the ground truth, if available. The sample order weighs the bias terms, that is,
more recent errors get penalized more heavily. Conducting such an evaluation
requires the ground truth value of the class size N , as well as the estimates
calculated on the time-ordered sample periods.

φ =

∑k
i=1

∣∣∣N̂i −N
∣∣∣ i∑

i
=

2
∑k

i=1 |N̂i −N |
k(k + 1)

(10)

Convergence Metric Conversely, we introduce a new metric ρ that aims at
evaluating the convergence of a given estimate. This metric acts as the main
measurement tool in a real scenario where we do not have access to the ground
truth, e.g. when performing large-scale analyses of completeness across classes.
The metric is derived from φ, as we look for stability and close distance between
the estimate and the number D of distinct values. In contrast to the error metric,
only the last w observed samples out of the full set of samples are used in the
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convergence metric. The closer the metric is to zero, the more confident we are
that the class has converged to its complete set.

ρ =

∑k
i=k−w

|N̂i−Di|
Di

w
(11)

In the following section, we evaluate the presented estimators on a set of eight
classes from Wikidata. We report our findings using the error and convergence
metrics for the following estimators: Jack1 (N̂jack1)9, N1-UNIF (N̂N1-UNIF), SOR
(N̂SOR) and Chao92 (N̂chao92).

4 Experimental Evaluation

We discuss the results of an extensive experimental evaluation of the estimators
introduced in Section 3 below, starting with the description of the dataset we
used. We obtain the full edit history of the Knowledge Graph and collect the
observations for all the classes we found in Wikidata. We then selected a sub-
sample of classes for which we have meaningful characteristics regarding the
number of observations spread over time. From this set, we randomly selected
classes and searched for an independent authoritative source that reports their
true cardinality. We set the sample period to 30 days, which results in at least
one observation per sample period on most classes we selected. We use the last
four samples (w = 4 which equals roughly 4 Months) of our results to calculate
the convergence metric. Note that if an instance was not assigned the correct
class we are not able to count it and we consider it as missing. This is a desirable
effect since a declarative query on Wikidata requesting the full list of a class will
not return such instances either.

4.1 Data

To evaluate our class completeness estimation methods, we use two different
datasets from Wikidata: First, we use the entity graph, provided by the Wikidata
JSON dumps as of Aug 18, 201810. The JSON dump contains the actual node
descriptions and the edges between the nodes. Second, we use the edit history as
of Oct 1, 2018 provided in the Wikibase XML Dump11. The edit history provides
the list of all actions performed on the KG including the creation of new items,
the update of labels and other values, as well as reverted edits12. For each action,
the XML dump provides the item changed, the user who made the change, the
timestamp, a comment describing the action, and a pointer to the state of the
graph before this action.

9 We do not report on Jack2 as it has been shown to over-estimate the population size
when the sample size is large [5], which we have experienced as well.

10 JSON Dump: https://doi.org/10.5281/zenodo.3268725
11 Edit History: https://dumps.wikimedia.org/wikidatawiki/latest/
12 List of all Wikibase actions: https://www.mediawiki.org/wiki/Wikibase/API/en
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Dataset Description: Entity Degree Distribution To explore the charac-
teristics of the dataset, we look at the graph as a whole (Fig. 2) and observe the
constant overall growth of entities with different in and out-degrees at different
points in time.
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Fig. 2. The evolution of Wikidata: a temporal view on how the in- and out-degree
distributions have evolved since the inception of the project.

Classes and Instances in the case of Wikidata Wikidata can be interpreted
as an RDF graph [8], with a data model that differentiates between entities
(including classes and instances) and properties. We define classes and instances
in the Wikidata graph G = (V,E) as follows:

Single Domain Classes In Wikidata, edges with the explicit label EP31: in-
stanceOf and EP279: subclassOf explicitly define classes.13 The target vertex Vt
which can be reached by following the edge with label EP31: instanceOf from
the source vertex Vs are part of the classes C. Super classes collect all instances
of a class C which follow the edge EP279: subclassOf once or multiple times.

Listing 1.2. Retrieves all instances of a specified single domain.

SELECT ?instance

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515. }

To extract all instances of class CQ515 : City we issue Query 1.2 against the
Wikidata endpoint.

13 https://www.wikidata.org/wiki/Wikidata:WikiProject_Ontology/Classes
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Composite Classes We create composite classes by joining a class C on one
or multiple properties E and their target instances V . As an example, we can
join class CQ515: City with property EP17: country and target VQ142: France on
the instances of CQ515. The result is a composite class of all Cities in France
CQ515./P17,Q142.

Listing 1.3. Retrieves all instances of a composite class.

SELECT ?instance

WHERE { ?instance wdt:P31/wdt:P279* wd:Q515.

?instance wdt:P17 wd:Q142. }

As an example, Query 1.3 selects instances from the aforementioned composite
class CQ515./P17,Q142.

Data preparation The massive size of the edit history made it impossible to
extract all observations from a database efficiently. Thus, in a first step we pre-
process the edit history. We select all edits involving at least two entities V which
therefore could be used to extract observations. The resulting intermediate data
provides more than 161 million edits containing the source entity Vs, the property
label of the connecting E, the target entity Vt, as well as the timestamp and the
user. In a second step, we pre-processed the JSON Dump into an in-memory
graph to get fast access to all instances V and properties E (with property
labels) of the Wikidata Graph. This gives us information on which entity V
belongs to which class C. Finally, to extract the observations pointing to an
entity, we join the Wikidata edits with the in-memory Graph.

We filter out the observations belonging to a specific class C by joining the
observations pointing to an entity which in turn point to a class. The resulting
data, grouped by class, consists of 370 million distinct observations.

4.2 Results

Figure 3 shows the results of the various estimators we consider. The top part of
each plot represents the results of the estimators for a specific domain, as well as
the lower bound given by the absolute number of distinct instances observed. The
x-axis represents the number of sample periods that we obtain in chronological
order to perform the class size estimation. At each sample period, we run an
estimator using all the data samples collected so far. The dashed line indicates
the ground truth size. The bottom part of each plot shows a comparison of two
indicators: Distinct, the distinct number of instances up to the sample period
and f1, the proportion of instances observed exactly once, both normalized to
the distinct number of instances retrieved in the end. These indicators are key to
our methods and serve the purpose of explaining the behavior of each estimator
with respect to the properties of the samples. In the following, we discuss these
results and highlight key properties of each set of observations.
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Fig. 3. Estimators used on Single Domain (a)-(f) and Composite classes (g)-(h).

Size Estimates on Single Domain Classes First, we inspect the results of
estimating the size of a class when the query involves a single class definition.
The first five figures show incomplete classes. In Fig. 3(a) we show the results for
the small-sized class Video Game Consoles (N = 184)14. We note how Chao92
is particularly intolerant to the small class size and overestimates. Fig. 3(b)
shows the estimators for the class Volcanos (N = 1500)15. Figure Fig. 3(c),
for Skyscrapers (N = 4669)16, shows a class that is almost complete. The es-
timators are overshooting, because the f1 on the available instances is high. In
Fig. 3(d) Hospitals (N = 12090)17, we observe how large classes also bring larger
numbers of observations. This in turn helps the estimators to get stable before
completeness is reached. A massive class is represented with Fig. 3(e) Mountains
(N = 1000809)18. We are aware that the ground truth, even if well researched
by the source, is still rather suggestive. Nevertheless, the estimators suggest that
there are missing instances. Finally, Fig. 3(f) Municipalities of the Czech Repub-
lic (N = 6258)19 shows a class which was complete early (around Sample 10).
All estimators slowly converge to the ground truth.

14
https://en.wikipedia.org/wiki/List_of_home_video_game_consoles

15
https://www.usgs.gov/faqs/how-many-active-volcanoes-are-there-earth

16
http://www.skyscrapercenter.com/

17
https://gateway.euro.who.int/en/indicators/hfa_471-5011-number-of-hospitals/

18
https://peakvisor.com/en/news/how_many_mountains_on_earth.html

19
https://www.oecd.org/regional/regional-policy/Subnational-governments-in-OECD-Countries-
Key-Data-2018.pdf
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Table 1. Performance evaluation of the estimators compared to the lower bound of
the count of distinct instances. For each estimator we report the error φ and the
convergence ρ. Results in bold indicates the lowest error for a given estimator. N is
the groundtruth and D is the number of distinct instances on the last sample.

N1-UNIF Chao92 Jack1 SOR Distinct

Video Game Consoles φ 57.7 79.3 27.4 36.0 64.7
(N = 184, D = 144) ρ 0.0403 1.0096 0.2929 0.5529

Volcanos φ 468.3 395.4 339.7 415.8 550.2
(N = 1500, D = 1273) ρ 0.0739 0.2300 0.2545 0.1700

Skyscrapers φ 678.6 826.0 758.4 650.4 1109.1
(N = 4669, D = 4222) ρ 0.1133 0.2560 0.3053 0.1482

Hospitals φ 2,462 2,080 1,538 2,663 3945
(N = 12090, D = 10215) ρ 0.0760 0.1126 0.1875 0.1126

Mountains φ 671,874 656,653 643,616 709,178 751,938
(N = 1000809, D = 444222) ρ 0.3255 0.4404 0.4503 0.1359

Municipalities of the CZ φ 22.2 31.3 86.3 31.3 26.6
(N = 6258, D = 6256) ρ 0.0002 0.0008 0.0029 0.0008

Cathedrals of Mexico φ 37.2 35.0 31.7 36.6 43.1
(N = 93, D = 63) ρ 0.0159 0.0162 0.0463 0.0162

Paintings by V. van Gogh φ 184.8 183.1 173.0 189.1 204.9
(N = 864, D = 848) ρ 0.0027 0.0028 0.0119 0.0028

Size Estimates on Composite Classes As composite classes are by definition
a subset of instances, compared to single domain classes, the associated obser-
vations can also drop to low numbers. Figure 3(g) shows such a case where the
number of observations involving instances of a CQ2977./P17,Q96 Cathedrals in
Mexico (N = 93)20 is n = 387. Figure Fig. 3(h) CQ3305213./P170,Q5582 Paintings
by Vincent van Gogh (T = 864)21 is an example which displays the differ-
ent phases of an estimator can encounter until class completeness. Starting by
growing slowly at first with the addition of the first few elements. We observe
intermittent overshooting when a large number of instances are added in a batch
process. The final phase is a fast convergence towards the value of the ground
truth.

Performance Evaluation For all our experiments, we computed the error
and convergence metrics introduced in Section 3.4 to obtain quantitative mea-
surements on how the estimators perform and how they can be used. Table 1
summarizes the evaluation results across all classes considered in our work. We
observe that Jack1 and SOR consistently achieve the lowest error rate across all
classes.
20

https://en.wikipedia.org/wiki/List_of_cathedrals_in_Mexico
21

https://de.wikipedia.org/wiki/Vincent_van_Gogh#cite_note-Thomson_84-1
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Table 2. Lists of 10 randomly picked examples. Left with a low ρ suggesting a complete
class, and right a high ρ suggesting an incomplete class.

SOR ρ < 0.001 Distinct

municipality of Japan 0.0000 739
Philippine TV series 0.0009 822
Landgemeinde of Austria 0.0000 1,116
district of China 0.0009 975
nuclear isomer 0.0002 1,322
international border 0.0000 529
commune of France 0.0001 34,937
village of Burkina Faso 0.0005 2,723
supernova 0.0005 5,906
township of Indiana 0.0002 999

SOR ρ > 0.1 Distinct

urban beach 0.1759 683
hydroelectric power station 0.2975 2,936
aircraft model 0.1800 3,919
motorcycle manufacturer 0.1758 690
local museum 0.1760 1,150
waterfall 0.1942 5,322
race track 0.2783 946
film production company 0.2107 2,179
red telephone box 0.3469 2,716
mountain range 0.2390 21,390

4.3 Discussion

Our experimental results unveiled key properties in terms of the sensitivity and
conditions under which some estimators perform better than others. Generally
speaking, all estimators beat the lower bound of distinct numbers in the error
metric φ. The exception is the class (Municipalities of the CZ) which converged
early on, and for which N1-UNIF still beats the error of the distinct values.
However, the other estimators lose against the lower bound (distinct) in this
example on the number of instances because they over estimate the class size in
the early samples before the class reaches completeness. We observe that more
conservative estimators N1-UNIF, Chao92 perform worse then Jack1 and SOR
for incomplete classes, which is why we recommend the last two in the end
for the estimation of the class size. The convergence metric can be used as an
indicator to distinguish complete from incomplete classes without requiring the
knowledge of the real class size. In Table 1, we see how the convergence metrics ρ
are low (< 0.001) for complete classes. On the other hand for incomplete classes
ρ is comparatively high (> 0.1). Table 2 lists ten randomly-picked classes, along
with the convergence on SOR and the number of distinct instances, for a low
and high ρ values suggesting complete and incomplete classes respectively. These
lists illustrate how our convergence metric can be leveraged to identify gaps in
the KG.

4.4 Additional Material and Tools

The results on all classes in Wikidata are available at http :

//cardinal.exascale.info. We also release our Python code imple-
menting the data processing pipeline, all estimators and metrics as an open
source package22. This includes tools to seek for incomplete classes based on
the convergence metric. Finally, we provide the pre-processed data at every
step of the processing pipeline, as well as the final results for each dataset.

22 https://github.com/eXascaleInfolab/cardinal/
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5 Conclusions and Future Work

In this work, we introduced a methodology to estimate class sizes in a collabo-
rative KG and evaluated it over Wikidata. We showed how collaborative editing
dynamics create a trove of information that can be mined to extract informa-
tion about data access, edits, data linkage, and overall graph growth. We relied
on the edit history over six years of activity in Wikidata to collect capture-
recapture observations related to a particular entity within the class of interest.
We reviewed, applied, and evaluated a battery of non-parametric statistical tech-
niques that leverage frequency statistics collected from the data to estimate the
completeness of a given class.

Our experimental results show that many estimators yield accurate estimates
when provided with enough observations that reflect the actual underlying dis-
tribution of the instances of a class. However, some estimators like Chao92 tend
to be less robust to bursts of newly discovered instances. Finally, based on our re-
sults, we provided a set of practical recommendations to use convergence metric
in conjunction with estimators to decide whether a particular class is complete
or to perform large-scale completeness analyses. Our work has direct implica-
tions for both Wikidata editors and data consumers. We can provide convergence
statistics on the estimated class completeness by domains to point to knowledge
gaps. Such statistics could aid newcomers, who often feel insecure about what
to edit, to decide what to contribute or what to focus on.

In future work, we plan to leverage statistics on page views showing the at-
tention that specific groups of items receive within the KG to inform estimators.
We would also like to develop parametric models that assume a particular edit
probability distribution. This is especially applicable to domains with a consid-
erable bias towards popular entities such as Humans and Musicians. Another
area of potential development is the usage of completeness estimators to detect
systematic errors in Wikidata: While exploring the data, we have observed many
cases of misclassification, which we conjecture as being the result of the growing
complexity of the Wikidata ontology that includes more than forty thousand
classes at the time of writing.
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