101 research outputs found

    In Vitro Evaluation Of Antifungal Activity Of Monolaurin Against Candida Albicans Biofilms

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Monolaurin (also known as glycerol monolaurate) is a natural compound found in coconut oil and is known for its protective biological activities as an antimicrobial agent, The nature of oral candidiasis and the increased antifungal resistance demand the search for novel antifungal therapeutic agents. In this study, we examine the antifungal activity of monolaurin against Candida albicans biofilms (strain ATCC:SC5314/MYA2876) in vitro and investigate whether monolaurin can alter gene expression of host inflammatory cytoknes, IL-1 alpha and IL-1 beta. In a co-culture model, oral fibroblast cells were cultured simultaneously with C. albicans for 24 hrs followed by the exposure to treatments of monolaurin (3.9-2,500 mu M), positive control fluconazole (32,2 mu M), and vehicle control group (1% ethanol), which was a model used to evaluate the cytotoxicity of monolaurin on fibroblasts as well as to analyze morphological characteristics of biofilms through fluorescence microscopy. In addition, the co-culture model was used for RNA extraction of oral fibroblasts to assess gene expression of host inflammatory cytokines, using quantitative rea-time PCR. Our results showed the MIC and MFC of monolaurin were in the range 62,5-125 mu M and 125-250 mu M, respectively, Biofilm antifungal assay showed significant reduction in Log (CFU/ml) of biofilms treated with 1,250 and 2,500 mu M of 1-monolaurin when compared to the control groups. There was also a significant down-regulation of IL-1 alpha and IL-1 beta in the co-culture treated with monolaurin. It can be concluded that monolaurin has a potential antifungal activity against C. albicans and can modulate the pro-inflammatory response of the host.4National Center for Complementary and Integrative Health of the National Institutes of Health [R00AT006507]Brazilian Federal Agency under CAPES [2317/2014-01]NIH/NIDCR [T90DE021982]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Brucellosis remains a neglected disease inthe developing world: a call forinterdisciplinary action

    Get PDF
    Brucellosis places significant burdens on the human healthcare system and limits the economic growth of individuals, communities, and nations where such development is especially important to diminish the prevalence of poverty. The implementation of public policy focused on mitigating the socioeconomic effects of brucellosis in human and animal populations is desperately needed. When developing a plan to mitigate the associated consequences, it is vital to consider both the abstract and quantifiable effects. This requires an interdisciplinary and collaborative, or One Health, approach that consists of public education, the development of an infrastructure for disease surveillance and reporting in both veterinary and medical fields, and campaigns for control in livestock and wildlife species

    Ruminant Brucellosis in the Kafr El Sheikh Governorate of the Nile Delta, Egypt: Prevalence of a Neglected Zoonosis

    Get PDF
    Brucellosis is a zoonosis of mammals caused by bacteria of the genus Brucella. It is responsible for a vast global burden imposed on human health through disability and on animal productivity. In humans brucellosis causes a range of flu-like symptoms and chronic debilitating illness. In livestock brucellosis causes economic losses as a result of abortion, infertility and decreased milk production. The main routes for human infection are consumption of contaminated dairy products and contact with infected ruminants. The control of brucellosis in humans depends on its control in ruminants, for which accurate estimates of the frequency of infection are very useful, especially in areas with no previous frequency estimates. We studied the seroprevalence of brucellosis and its geographic distribution among domestic ruminants in one governorate of the Nile Delta region, Egypt. In the study area, the seroprevalence of ruminant brucellosis is very high and has probably increased considerably since the early 1990s. The disease is widespread but more concentrated around major animal markets. These findings question the efficacy of the control strategy in place and highlight the high infection risk for the animal and human populations of the area and the urgent need for an improved control strategy

    Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius

    Get PDF
    Staphylococcus pseudintermedius is a commensal organism of companion animals that is a significant source of opportunistic infections in dogs. With the emergence of clinical isolates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP)) exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and therapeutic strategies are urgently needed. Thiazole compounds have been previously shown to possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus aureus of human and animal concern. Given the genetic similarity between S. aureus and S. pseudintermedius, this study explores the potential use of thiazole compounds as novel antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP. A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity (at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. However, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane indicating an alternative mechanism of action for these compounds against MRSP. A multistep resistance selection analysis revealed compounds 4 and 5 exhibited a modest (twofold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these compounds have potential use for extending the therapeutic utility of β-lactam antibiotics against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3 exhibited an improved physicochemical profile compared to the lead compound. In addition to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours) against MRSP. Collectively the present study demonstrates these synthetic thiazole compounds possess potent antibacterial activity against both MSSP and MRSP and warrant further investigation into their use as novel antimicrobial agents

    Estimating loss of Brucella abortus antibodies from age-specific serological data in elk

    Get PDF
    Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data

    Functional Recellularization of Acellular Rat Liver Scaffold by Induced Pluripotent Stem Cells: Molecular Evidence for Wnt/B-Catenin Upregulation.

    Get PDF
    BACKGROUND: Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/β-catenin signaling in liver development and generation. METHODS: Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/β-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS: iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/β-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION: This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment

    Genome Sequence of Brucella abortus Vaccine Strain S19 Compared to Virulent Strains Yields Candidate Virulence Genes

    Get PDF
    The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9–941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism

    Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    Get PDF
    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies
    • …
    corecore