1,686 research outputs found

    Timed Parity Games: Complexity and Robustness

    Get PDF
    We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are \emph{concurrent} in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to play strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state} (i.e., untimed) parity games. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games. The states of the resulting game are based on clock regions of the original game, and the state space of the finite game is linear in the size of the region graph. Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, \emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a limit-robust winning strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust winning. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust winning strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers

    Transumbilical laparoscopic treatment of Congenital Infantile Fibrosarcoma of the Ileum.

    Get PDF
    Congenital-Infantile Fibrosarcoma (CIF) is a malignant mesenchymal tumor representing 10-20% of soft-tissue tumors. Complete surgical resection is generally the treatment of choice. The most recurrent cytogenetic abnormality was identified as the traslocation t(12;15)(p13:q25), which bears the fusion of Tel gene EVT6 with TrkC gene. This study describes a case of infantile fibrosarcoma of the ileum in a female newborn examined for intestinal occlusion and its laparoscopic treatment

    Testing Reactive Probabilistic Processes

    Full text link
    We define a testing equivalence in the spirit of De Nicola and Hennessy for reactive probabilistic processes, i.e. for processes where the internal nondeterminism is due to random behaviour. We characterize the testing equivalence in terms of ready-traces. From the characterization it follows that the equivalence is insensitive to the exact moment in time in which an internal probabilistic choice occurs, which is inherent from the original testing equivalence of De Nicola and Hennessy. We also show decidability of the testing equivalence for finite systems for which the complete model may not be known

    An Algorithm for Probabilistic Alternating Simulation

    Get PDF
    In probabilistic game structures, probabilistic alternating simulation (PA-simulation) relations preserve formulas defined in probabilistic alternating-time temporal logic with respect to the behaviour of a subset of players. We propose a partition based algorithm for computing the largest PA-simulation, which is to our knowledge the first such algorithm that works in polynomial time, by extending the generalised coarsest partition problem (GCPP) in a game-based setting with mixed strategies. The algorithm has higher complexities than those in the literature for non-probabilistic simulation and probabilistic simulation without mixed actions, but slightly improves the existing result for computing probabilistic simulation with respect to mixed actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio

    Ambient Air Pollution, Social Inequalities and Asthma Exacerbation in Greater Strasbourg (France) Metropolitan Area: the PAISA Study

    Get PDF
    International audienceThe socio-economic status (SES) of populations has an influence on the incidence or mortality rates of numerous health outcomes, among which respiratory diseases (Prescott et al., 2003; Ellison-Loschmann et al., 2007). Considering asthma, the possible contribution of SES to overall prevalence –regardless of asthma severity-, remains controversial in industrialized countries. Several studies indicate that allergic asthma is more prevalent in more well-off populations whereas the non-allergic forms of asthma are more common in the deprived ones (Cesaroni et al., 2003; Blanc et al., 2006). On the other hand, severe asthma whatever its etiology appears to be more frequent in the latter populations, as compared to the more affluent (Basagana et al., 2004). Risk factors for exacerbations (e.g., passive smoking (Wright Subramanian, 2007), psychosocial stress (Gold & Wright, 2005), cockroach allergens (Kitch et al., 2000), and suboptimal compliance with anti-inflammatory medication (Gottlieb et al., 1995)) are generally more common among people with asthma and low SES than their better-off counterparts. These observations support the hypothesis that some factors more present in deprived populations contribute to asthma exacerbation (Mielck et al., 1996)

    Mechanism and Uses of a Membrane Peptide that Targets Tumors and Other Acidic Tissues \u3cem\u3eIn Vivo\u3c/em\u3e

    Get PDF
    The pH-selective insertion and folding of a membrane peptide, pHLIP [pH (low) insertion peptide], can be used to target acidic tissue in vivo, including acidic foci in tumors, kidneys, and inflammatory sites. In a mouse breast adenocarcinoma model, fluorescently labeled pHLIP finds solid acidic tumors with high accuracy and accumulates in them even at a very early stage of tumor development. The fluorescence signal is stable for \u3e4 days and is approximately five times higher in tumors than in healthy counterpart tissue. In a rat antigen-induced arthritis model, pHLIP preferentially accumulates in inflammatory foci. pHLIP also maps the renal cortical interstitium; however, kidney accumulation can be reduced significantly by providing mice with bicarbonate-containing drinking water. The peptide has three states: soluble in water, bound to the surface of a membrane, and inserted across the membrane as an α-helix. At physiological pH, the equilibrium is toward water, which explains its low affinity for cells in healthy tissue; at acidic pH, titration of Asp residues shifts the equilibrium toward membrane insertion and tissue accumulation. The replacement of two key Asp residues located in the transmembrane part of pHLIP by Lys or Asn led to the loss of pH-sensitive insertion into membranes of liposomes, red blood cells, and cancer cells in vivo, as well as to the loss of specific accumulation in tumors. pHLIP nanotechnology introduces a new method of detecting, targeting, and possibly treating acidic diseased tissue by using the selective insertion and folding of membrane peptides

    Distribution-based bisimulation for labelled Markov processes

    Full text link
    In this paper we propose a (sub)distribution-based bisimulation for labelled Markov processes and compare it with earlier definitions of state and event bisimulation, which both only compare states. In contrast to those state-based bisimulations, our distribution bisimulation is weaker, but corresponds more closely to linear properties. We construct a logic and a metric to describe our distribution bisimulation and discuss linearity, continuity and compositional properties.Comment: Accepted by FORMATS 201

    On coalgebras with internal moves

    Full text link
    In the first part of the paper we recall the coalgebraic approach to handling the so-called invisible transitions that appear in different state-based systems semantics. We claim that these transitions are always part of the unit of a certain monad. Hence, coalgebras with internal moves are exactly coalgebras over a monadic type. The rest of the paper is devoted to supporting our claim by studying two important behavioural equivalences for state-based systems with internal moves, namely: weak bisimulation and trace semantics. We continue our research on weak bisimulations for coalgebras over order enriched monads. The key notions used in this paper and proposed by us in our previous work are the notions of an order saturation monad and a saturator. A saturator operator can be intuitively understood as a reflexive, transitive closure operator. There are two approaches towards defining saturators for coalgebras with internal moves. Here, we give necessary conditions for them to yield the same notion of weak bisimulation. Finally, we propose a definition of trace semantics for coalgebras with silent moves via a uniform fixed point operator. We compare strong and weak bisimilation together with trace semantics for coalgebras with internal steps.Comment: Article: 23 pages, Appendix: 3 page

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    Targeting Multiple Mitochondrial Processes by a Metabolic Modulator Prevents Sarcopenia and Cognitive Decline in SAMP8 Mice

    Get PDF
    The age-dependent declines of skeletal muscle and cognitive functions often coexist in elderly subjects. The underlying pathophysiological mechanisms share common features of mitochondrial dysfunction, which plays a central role in the development of overt sarcopenia and/or dementia. Dietary supplementation with formulations of essential and branched-chain amino acids (EAA-BCAA) is a promising preventive strategy because it can preserve mitochondrial biogenesis and function. The senescence-accelerated mouse prone 8 (SAMP8) is considered an accurate model of age-related muscular and cognitive alterations. Hence, we aimed to investigate the progression of mitochondrial dysfunctions during muscular and cognitive aging of SAMP8 mice and to study the effects of a novel EAA-BCAA-based metabolic modulator on these changes. We evaluated body condition, motor endurance, and working memory of SAMP8 mice at 5, 9, 12, and 15 months of age. Parallel changes in protein levels of mitochondrial respiratory chain subunits, regulators of mitochondrial biogenesis and dynamics, and the antioxidant response, as well as respiratory complex activities, were measured in the quadriceps femoris and the hippocampus. The same variables were assessed in 12-month-old SAMP8 mice that had received dietary supplementation with the novel EAA-BCAA formulation, containing tricarboxylic acid cycle intermediates and co-factors (PD-0E7, 1.5 mg/kg/body weight/day in drinking water) for 3 months. Contrary to untreated mice, which had a significant molecular and phenotypic impairment, PD-0E7-treated mice showed preserved healthy body condition, muscle weight to body weight ratio, motor endurance, and working memory at 12 months of age. The PD-0E7 mixture increased the protein levels and the enzymatic activities of mitochondrial complex I, II, and IV and the expression of proliferator-activated receptor \u3b3 coactivator-1\u3b1, optic atrophy protein 1, and nuclear factor, erythroid 2 like 2 in muscles and hippocampi. The mitochondrial amyloid-\u3b2-degrading pitrilysin metallopeptidase 1 was upregulated, while amyloid precursor protein was reduced in the hippocampi of PD-0E7 treated mice. In conclusion, we show that a dietary supplement tailored to boost mitochondrial respiration preserves skeletal muscle and hippocampal mitochondrial quality control and health. When administered at the early onset of age-related physical and cognitive decline, this novel metabolic inducer counteracts the deleterious effects of precocious aging in both domains
    • …
    corecore