565 research outputs found

    Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies

    Get PDF
    We have used high-throughput Illumina sequencing to identify novel recombinants between deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants, VDV-1VVD and VDV-1DVD, exhibit crossovers between the 5’-untranslated region (5’-UTR), and/or the regions encoding the structural (capsid) and non-structural viral proteins. This implies the genomes are modular and that each region may evolve independently, as demonstrated in human enteroviruses. Individual honeybee pupae were infected with a mixture of observed recombinants and DWV. The strong correlation between VDV-1DVD levels in honeybee pupae and the associated mites was observed, suggesting that this recombinant, with a DWV-derived 5’-UTR and non-structural protein region flanking VDV- 1-derived capsid encoding region, is better adapted to transmission between V. destructor and honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5’-UTR (VDV-1VVD)

    Toric G_2 and Spin(7) holonomy spaces from gravitational instantons and other examples

    Get PDF
    Non-compact G_2 holonomy metrics that arise from a T^2 bundle over a hyper-Kahler space are discussed. These are one parameter deformations of the metrics studied by Gibbons, Lu, Pope and Stelle in hep-th/0108191. Seven-dimensional spaces with G_2 holonomy fibered over the Taub-Nut and the Eguchi-Hanson gravitational instantons are found, together with other examples. By considering the Apostolov-Salamon theorem math.DG/0303197, we construct a new example that, still being a T^2 bundle over hyper-Kahler, represents a non trivial two parameter deformation of the metrics studied in hep-th/0108191. We then review the Spin(7) metrics arising from a T^3 bundle over a hyper-Kahler and we find two parameter deformation of such spaces as well. We show that if the hyper-Kahler base satisfies certain properties, a non trivial three parameter deformations is also possible. The relation between these spaces with the half-flat structures and almost G_2 holonomy spaces is briefly discussed.Comment: 27 pages. Typos corrected. Accepted for publication in Commun.Math.Phy

    New non compact Calabi-Yau metrics in D=6

    Get PDF
    A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.Comment: A numerical error has been corrected together with the corresponding analysis of the metri

    Rabi Oscillations and Entanglement Between Two Rydberg Atoms in an Optical Cavity Studied by the Jaynes-Cummings Model and Quantum Circuits on Qiskit

    Get PDF
    Rydberg atoms are highly excited atoms in which one electron has a large principal quantum number. Due to their unusual atomic properties, Rydberg atoms are promising building blocks of two-qubit gates and light-atom quantum interfaces in quantum information processing. For two atoms at close distance (\u3c 10 mm) the Rydberg blockade prevents the two atoms to be simultaneously in the excited state whereas this blockade is absent for atoms far apart. Recently, this effect was used to engineer a quantum processor based on two-dimensional arrays of neutral atoms which are trapped and transported by optical tweezers. Motivated by these experiments, we study the light-atom interaction and entanglement of two Rydberg atoms interacting by the Rydberg blockade in an optical cavity using the Jaynes-Cummings model. We find a rich variety of Rabi oscillations and entanglement as a function of initial conditions and interaction time, which may be used to generate two-qubit gates. Furthermore, we develop and simulate a quantum circuit of this system using Qiskit, an open-source software development kit designed to emulate the operation of a real Quantum Computer

    A Deformation of Sasakian Structure in the Presence of Torsion and Supergravity Solutions

    Full text link
    We discuss a deformation of Sasakian structure in the presence of totally skew-symmetric torsion by introducing odd dimensional manifolds whose metric cones are K\"ahler with torsion. It is shown that such a geometry inherits similar properties to those of Sasakian geometry. As an example of them, we present an explicit expression of local metrics and see how Sasakian structure is deformed by the presence of torsion. We also demonstrate that our example of the metrics admits the existence of hidden symmetries described by non-trivial odd-rank generalized closed conformal Killing-Yano tensors. Furthermore, using these metrics as an {\it ansatz}, we construct exact solutions in five dimensional minimal (un-)gauged supergravity and eleven dimensional supergravity. Finally, we discuss the global structures of the solutions and obtain regular metrics on compact manifolds in five dimensions, which give natural generalizations of Sasaki--Einstein manifolds Yp,qY^{p,q} and La,b,cL^{a,b,c}. We also discuss regular metrics on non-compact manifolds in eleven dimensions.Comment: 38 pages, 1 table, v2: version to appear in Class. Quant. Gra

    Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade and with a quantized radiation field studied by the Jaynes-Cummings Model

    Get PDF
    The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes-Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We find a rich variety of Rabi oscillations and entanglement between the atoms and the radiation field as a function of initial conditions and interaction time, which may be used to obtain atom-light quantum interfaces as components for future long-distance quantum communication

    Head-Tail Clouds: Drops to Probe the Diffuse Galactic Halo

    Full text link
    A head-tail high-velocity cloud (HVC) is a neutral hydrogen halo cloud that appears to be interacting with the diffuse halo medium as evident by its compressed head trailed by a relatively diffuse tail. This paper presents a sample of 116 head-tail HVCs across the southern sky (d < 2 deg) from the HI Parkes All Sky Survey (HIPASS) HVC catalog, which has a spatial resolution of 15.5 arcmin (45 pc at 10 kpc) and a sensitivity of N_HI=2 x 10^(18) cm^(-2) (5 sigma). 35% of the HIPASS compact and semi-compact HVCs (CHVCs and :HVCs) can be classified as head-tail clouds from their morphology. The clouds have typical masses of 730 M_sun at 10 kpc (26,000 M_sun at 60 kpc) and the majority can be associated with larger HVC complexes given their spatial and kinematic proximity. This proximity, together with their similar properties to CHVCs and :HVCs without head-tail structure, indicate the head-tail clouds have short lifetimes, consistent with simulation predictions. Approximately half of the head-tail clouds can be associated with the Magellanic System, with the majority in the region of the Leading Arm with position angles pointing in the general direction of the movement of the Magellanic System. The abundance in the Leading Arm region is consistent with this feature being closer to the Galactic disk than the Magellanic Stream and moving through a denser halo medium. The head-tail clouds will feed the multi-phase halo medium rather than the Galactic disk directly and provide additional evidence for a diffuse Galactic halo medium extending to at least the distance of the Magellanic Clouds.Comment: MNRAS Accepted, 10 figures, 7 in colo

    Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes

    Get PDF
    The workshops that led to this article were supported financially by the Universities of Leicester and Nottingham, and the Natural Environment Research Council-funded ‘Earth Observation Technology Cluster’ knowledge exchange initiativeOur limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.PostprintPeer reviewe

    Betamethasone: a novel therapeutic intervention for preeclampsia

    Get PDF
    The early pathogenesis of preeclampsia (PE) involves a systemic inflammatory immune response. Recent data demonstrate that increased circulating arginine vasopressin (AVP) in humans is predictive of PE and that infusion of AVP in mouse dams phenocopies the pregnancy-specific cardiovascular and immune alterations observed in human PE. Specifically, AVP suppresses anti-inflammatory cytokines and cells. Betamethasone (BMTZ), commonly given to women at risk for preterm birth, is both an AVP and immune response modulator. We hypothesize that early treatment with BMTZ will prevent the development of AVP-induced PE

    Regulatory dendritic cell treatment prevents the development of vasopressin-induced preeclampsia

    Get PDF
    The concept that persistent feto-placental intolerance is important in the pathogenesis of preeclampsia (PE) has been demonstrated by our lab and others. Arginine vasopressin (AVP) infusion during pregnancy induces cardiovascular, renal, and immune alterations in mice consistent with human PE. These findings identify AVP as a potential contributor to poor fetal tolerance and the development of PE. In addition to their conventional immuno-stimulatory role, dendritic cells (DCs) also play a vital role in immune tolerance. In contrast to conventional DCs, regulatory DCs (DCregs) express low levels of co-stimulatory markers, produce anti-inflammatory cytokines, induce T regulatory cells, and promote tolerance. In mice, DCregs are able to prevent pro-inflammatory responses and induce antigen-specific tolerance. Given these known functions of DCregs, we hypothesize that DCregs will prevent the development of AVP-induced PE
    corecore