565 research outputs found
Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies
We have used high-throughput Illumina sequencing to identify novel recombinants between
deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to
higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants,
VDV-1VVD and VDV-1DVD, exhibit crossovers between the 5’-untranslated region (5’-UTR),
and/or the regions encoding the structural (capsid) and non-structural viral proteins. This
implies the genomes are modular and that each region may evolve independently, as
demonstrated in human enteroviruses. Individual honeybee pupae were infected with a
mixture of observed recombinants and DWV. The strong correlation between VDV-1DVD
levels in honeybee pupae and the associated mites was observed, suggesting that this
recombinant, with a DWV-derived 5’-UTR and non-structural protein region flanking VDV-
1-derived capsid encoding region, is better adapted to transmission between V. destructor and
honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5’-UTR
(VDV-1VVD)
Toric G_2 and Spin(7) holonomy spaces from gravitational instantons and other examples
Non-compact G_2 holonomy metrics that arise from a T^2 bundle over a
hyper-Kahler space are discussed. These are one parameter deformations of the
metrics studied by Gibbons, Lu, Pope and Stelle in hep-th/0108191.
Seven-dimensional spaces with G_2 holonomy fibered over the Taub-Nut and the
Eguchi-Hanson gravitational instantons are found, together with other examples.
By considering the Apostolov-Salamon theorem math.DG/0303197, we construct a
new example that, still being a T^2 bundle over hyper-Kahler, represents a non
trivial two parameter deformation of the metrics studied in hep-th/0108191. We
then review the Spin(7) metrics arising from a T^3 bundle over a hyper-Kahler
and we find two parameter deformation of such spaces as well. We show that if
the hyper-Kahler base satisfies certain properties, a non trivial three
parameter deformations is also possible. The relation between these spaces with
the half-flat structures and almost G_2 holonomy spaces is briefly discussed.Comment: 27 pages. Typos corrected. Accepted for publication in
Commun.Math.Phy
New non compact Calabi-Yau metrics in D=6
A method for constructing explicit Calabi-Yau metrics in six dimensions in
terms of an initial hyperkahler structure is presented. The equations to solve
are non linear in general, but become linear when the objects describing the
metric depend on only one complex coordinate of the hyperkahler 4-dimensional
space and its complex conjugated. This situation in particular gives a dual
description of D6-branes wrapping a complex 1-cycle inside the hyperkahler
space, which was studied by Fayyazuddin. The present work generalize the
construction given by him. But the explicit solutions we present correspond to
the non linear problem. This is a non linear equation with respect to two
variables which, with the help of some specific anzatz, is reduced to a non
linear equation with a single variable solvable in terms of elliptic functions.
In these terms we construct an infinite family of non compact Calabi-Yau
metrics.Comment: A numerical error has been corrected together with the corresponding
analysis of the metri
Rabi Oscillations and Entanglement Between Two Rydberg Atoms in an Optical Cavity Studied by the Jaynes-Cummings Model and Quantum Circuits on Qiskit
Rydberg atoms are highly excited atoms in which one electron has a large principal quantum number. Due to their unusual atomic properties, Rydberg atoms are promising building blocks of two-qubit gates and light-atom quantum interfaces in quantum information processing. For two atoms at close distance (\u3c 10 mm) the Rydberg blockade prevents the two atoms to be simultaneously in the excited state whereas this blockade is absent for atoms far apart. Recently, this effect was used to engineer a quantum processor based on two-dimensional arrays of neutral atoms which are trapped and transported by optical tweezers. Motivated by these experiments, we study the light-atom interaction and entanglement of two Rydberg atoms interacting by the Rydberg blockade in an optical cavity using the Jaynes-Cummings model. We find a rich variety of Rabi oscillations and entanglement as a function of initial conditions and interaction time, which may be used to generate two-qubit gates. Furthermore, we develop and simulate a quantum circuit of this system using Qiskit, an open-source software development kit designed to emulate the operation of a real Quantum Computer
A Deformation of Sasakian Structure in the Presence of Torsion and Supergravity Solutions
We discuss a deformation of Sasakian structure in the presence of totally
skew-symmetric torsion by introducing odd dimensional manifolds whose metric
cones are K\"ahler with torsion. It is shown that such a geometry inherits
similar properties to those of Sasakian geometry. As an example of them, we
present an explicit expression of local metrics and see how Sasakian structure
is deformed by the presence of torsion. We also demonstrate that our example of
the metrics admits the existence of hidden symmetries described by non-trivial
odd-rank generalized closed conformal Killing-Yano tensors. Furthermore, using
these metrics as an {\it ansatz}, we construct exact solutions in five
dimensional minimal (un-)gauged supergravity and eleven dimensional
supergravity. Finally, we discuss the global structures of the solutions and
obtain regular metrics on compact manifolds in five dimensions, which give
natural generalizations of Sasaki--Einstein manifolds and
. We also discuss regular metrics on non-compact manifolds in eleven
dimensions.Comment: 38 pages, 1 table, v2: version to appear in Class. Quant. Gra
Rabi oscillations and entanglement between two atoms interacting by the Rydberg blockade and with a quantized radiation field studied by the Jaynes-Cummings Model
The interaction between atoms and a quantized radiation field is fundamentally important in quantum optics and quantum information science. Due to their unusual properties, Rydberg atoms are promising building blocks for two-qubit gates and atom-light quantum interfaces, exploiting the Rydberg blockade interaction which prevents two atoms at close distance from being simultaneously excited to Rydberg states. Recently, this effect was used to engineer quantum processors based on arrays of interacting Rydberg atoms illuminated by Raman lasers. Motivated by these experiments, we extend the Jaynes-Cummings model to study the interaction between two Rydberg atoms interacting by the Rydberg blockade and a quantized radiation field. We find a rich variety of Rabi oscillations and entanglement between the atoms and the radiation field as a function of initial conditions and interaction time, which may be used to obtain atom-light quantum interfaces as components for future long-distance quantum communication
Head-Tail Clouds: Drops to Probe the Diffuse Galactic Halo
A head-tail high-velocity cloud (HVC) is a neutral hydrogen halo cloud that
appears to be interacting with the diffuse halo medium as evident by its
compressed head trailed by a relatively diffuse tail. This paper presents a
sample of 116 head-tail HVCs across the southern sky (d < 2 deg) from the HI
Parkes All Sky Survey (HIPASS) HVC catalog, which has a spatial resolution of
15.5 arcmin (45 pc at 10 kpc) and a sensitivity of N_HI=2 x 10^(18) cm^(-2) (5
sigma). 35% of the HIPASS compact and semi-compact HVCs (CHVCs and :HVCs) can
be classified as head-tail clouds from their morphology. The clouds have
typical masses of 730 M_sun at 10 kpc (26,000 M_sun at 60 kpc) and the majority
can be associated with larger HVC complexes given their spatial and kinematic
proximity. This proximity, together with their similar properties to CHVCs and
:HVCs without head-tail structure, indicate the head-tail clouds have short
lifetimes, consistent with simulation predictions. Approximately half of the
head-tail clouds can be associated with the Magellanic System, with the
majority in the region of the Leading Arm with position angles pointing in the
general direction of the movement of the Magellanic System. The abundance in
the Leading Arm region is consistent with this feature being closer to the
Galactic disk than the Magellanic Stream and moving through a denser halo
medium. The head-tail clouds will feed the multi-phase halo medium rather than
the Galactic disk directly and provide additional evidence for a diffuse
Galactic halo medium extending to at least the distance of the Magellanic
Clouds.Comment: MNRAS Accepted, 10 figures, 7 in colo
Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes
The workshops that led to this article were supported financially by the Universities of Leicester and Nottingham, and the Natural Environment Research Council-funded ‘Earth Observation Technology Cluster’ knowledge exchange initiativeOur limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.PostprintPeer reviewe
Betamethasone: a novel therapeutic intervention for preeclampsia
The early pathogenesis of preeclampsia (PE) involves a systemic inflammatory immune response. Recent data demonstrate that increased circulating arginine vasopressin (AVP) in humans is predictive of PE and that infusion of AVP in mouse dams phenocopies the pregnancy-specific cardiovascular and immune alterations observed in human PE. Specifically, AVP suppresses anti-inflammatory cytokines and cells. Betamethasone (BMTZ), commonly given to women at risk for preterm birth, is both an AVP and immune response modulator. We hypothesize that early treatment with BMTZ will prevent the development of AVP-induced PE
Regulatory dendritic cell treatment prevents the development of vasopressin-induced preeclampsia
The concept that persistent feto-placental intolerance is important in the pathogenesis of preeclampsia (PE) has been demonstrated by our lab and others. Arginine vasopressin (AVP) infusion during pregnancy induces cardiovascular, renal, and immune alterations in mice consistent with human PE. These findings identify AVP as a potential contributor to poor fetal tolerance and the development of PE. In addition to their conventional immuno-stimulatory role, dendritic cells (DCs) also play a vital role in immune tolerance. In contrast to conventional DCs, regulatory DCs (DCregs) express low levels of co-stimulatory markers, produce anti-inflammatory cytokines, induce T regulatory cells, and promote tolerance. In mice, DCregs are able to prevent pro-inflammatory responses and induce antigen-specific tolerance. Given these known functions of DCregs, we hypothesize that DCregs will prevent the development of AVP-induced PE
- …
