We discuss a deformation of Sasakian structure in the presence of totally
skew-symmetric torsion by introducing odd dimensional manifolds whose metric
cones are K\"ahler with torsion. It is shown that such a geometry inherits
similar properties to those of Sasakian geometry. As an example of them, we
present an explicit expression of local metrics and see how Sasakian structure
is deformed by the presence of torsion. We also demonstrate that our example of
the metrics admits the existence of hidden symmetries described by non-trivial
odd-rank generalized closed conformal Killing-Yano tensors. Furthermore, using
these metrics as an {\it ansatz}, we construct exact solutions in five
dimensional minimal (un-)gauged supergravity and eleven dimensional
supergravity. Finally, we discuss the global structures of the solutions and
obtain regular metrics on compact manifolds in five dimensions, which give
natural generalizations of Sasaki--Einstein manifolds Yp,q and
La,b,c. We also discuss regular metrics on non-compact manifolds in eleven
dimensions.Comment: 38 pages, 1 table, v2: version to appear in Class. Quant. Gra