332 research outputs found
The beamformer and correlator for the Large European Array for Pulsars
The Large European Array for Pulsars combines Europe's largest radio
telescopes to form a tied-array telescope that provides high signal-to-noise
observations of millisecond pulsars (MSPs) with the objective to increase the
sensitivity of detecting low-frequency gravitational waves. As part of this
endeavor we have developed a software correlator and beamformer which enables
the formation of a tied-array beam from the raw voltages from each of
telescopes. We explain the concepts and techniques involved in the process of
adding the raw voltages coherently. We further present the software processing
pipeline that is specifically designed to deal with data from widely spaced,
inhomogeneous radio telescopes and describe the steps involved in preparing,
correlating and creating the tied-array beam. This includes polarization
calibration, bandpass correction, frequency dependent phase correction,
interference mitigation and pulsar gating. A link is provided where the
software can be obtained.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and
Computin
Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array
We investigate the constraints that can be placed on the cosmic string
tension by using the current Pulsar Timing Array limits on the stochastic
gravitational wave background (SGWB). We have developed a code to compute the
spectrum of gravitational waves (GWs) based on the widely accepted one-scale
model. In its simplest form the one-scale model allows one to vary: (i) the
string tension, G\mu/c^2; (ii) the size of cosmic string loops relative to the
horizon at birth, \alpha; (iii) the spectral index of the emission spectrum, q;
(iv) the cut-off in the emission spectrum, n_*; and (v) the intercommutation
probability, p. The amplitude and slope of the spectrum in the nHz frequency
range is very sensitive to these unknown parameters. We have also investigated
the impact of more complicated scenarios with multiple initial loop sizes, in
particular the 2-\alpha models proposed in the literature and a log-normal
distribution for \alpha. We have computed the constraint on G\mu/c^2 due to the
limit on a SGWB imposed by data from the European Pulsar Timing Array. Taking
into account all the possible uncertainties in the parameters we find a
conservative upper limit of G\mu/c^2<5.3x 10^{-7} which typically occurs when
the loop production scale is close to the gravitational backreaction scale,
\alpha\approx\Gamma G\mu/c^2. Stronger limits are possible for specific values
of the parameters which typically correspond to the extremal cases \alpha\ll
\Gamma G\mu/c^2 and \alpha\gg \Gamma G\mu/c^2. This limit is less stringent
than the previously published limits which are based on cusp emission, an
approach which does not necessarily model all the possible uncertainties. We
discuss the prospects for lowering this limit by two orders of magnitude, or
even a detection of the SGWB, in the very near future in the context of the
Large European Array for Pulsars and the Square Kilometre Array.Comment: 24 pages, 14 figures, accepted for publication in Physical Review D.
Minor corrections and additional comments - updated to match the published
versio
The international pulsar timing array project: using pulsars as a gravitational wave detector
The International Pulsar Timing Array project combines observations of
pulsars from both Northern and Southern hemisphere observatories with the main
aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves.
Here we introduce the project, review the methods used to search for
gravitational waves emitted from coalescing supermassive binary black-hole
systems in the centres of merging galaxies and discuss the status of the
project.Comment: accepted by Classical and Quantum Gravity. Review talk for the
Amaldi8 conference serie
The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the
noise present in the individual pulsar timing data. Noise may be either
intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include
rotational instabilities, for example. Extrinsic sources of noise include
contributions from physical processes which are not sufficiently well modelled,
for example, dispersion and scattering effects, analysis errors and
instrumental instabilities. We present the results from a noise analysis for 42
millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For
characterising the low-frequency, stochastic and achromatic noise component, or
"timing noise", we employ two methods, based on Bayesian and frequentist
statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent
results. For the remaining 17 MSPs, we place upper limits on the timing noise
amplitude at the 95% confidence level. We additionally place an upper limit on
the contribution to the pulsar noise budget from errors in the reference
terrestrial time standards (below 1%), and we find evidence for a noise
component which is present only in the data of one of the four used telescopes.
Finally, we estimate that the timing noise of individual pulsars reduces the
sensitivity of this data set to an isotropic, stochastic GW background by a
factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable,
inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal
Astronomical Societ
Deviation From \Lambda CDM With Cosmic Strings Networks
In this work, we consider a network of cosmic strings to explain possible
deviation from \Lambda CDM behaviour. We use different observational data to
constrain the model and show that a small but non zero contribution from the
string network is allowed by the observational data which can result in a
reasonable departure from \Lambda CDM evolution. But by calculating the
Bayesian Evidence, we show that the present data still strongly favour the
concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for
publication in European Physical Journal
A millisecond pulsar in an extremely wide binary system
International audienceWe report on 22 yrs of radio timing observations of the millisecond pulsar J1024−0719 by the telescopes participating in the European Pulsar Timing Array (EPTA). These observations reveal a significant second derivative of the pulsar spin frequency and confirm the discrepancy between the parallax and Shklovskii distances that has been reported earlier. We also present optical astrometry, photometry and spectroscopy of 2MASS J10243869−0719190. We find that it is a low-metallicity main-sequence star (K7V spectral type, [M/H] = −1.0, T eff = 4050 ± 50 K) and that its position, proper motion and distance are consistent with those of PSR J1024−0719. We conclude that PSR J1024−0719 and 2MASS J10243869−0719190 form a common proper motion pair and are gravitationally bound. The gravitational interaction between the main-sequence star and the pulsar accounts for the spin frequency derivatives , which in turn resolves the distance discrepancy. Our observations suggest that the pulsar and main-sequence star are in an extremely wide (P b > 200 yr) orbit. Combining the radial velocity of the companion and proper motion of the pulsar, we find that the binary system has a high spatial velocity of 384 ± 45 km s −1 with respect to the local standard of rest and has a Galactic orbit consistent with halo objects. Since the observed main-sequence companion star cannot have recycled the pulsar to millisecond spin periods, an exotic formation scenario is required. We demonstrate that this extremely wide-orbit binary could have evolved from a triple system that underwent an asymmetric supernova explosion, though find that significant fine-tuning during the explosion is required. Finally, we discuss the implications of the long period orbit on the timing stability of PSR J1024−0719 in light of its inclusion in pulsar timing arrays
From spin noise to systematics:stochastic processes in the first International Pulsar Timing Array data release
We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643-1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437-4715 data set improves the upper limit on a fiducial GW background by similar to 60 per cent compared to a model that includes DM variations and spin-noise only
High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array
International audienceWe report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity
The International Pulsar Timing Array: First data release
International audienceThe highly stable spin of neutron stars can be exploited for a variety of (astro)physical investigations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can be used to detect correlated signals such as those caused by gravitational waves. Three such 'pulsar timing arrays' (PTAs) have been set up around the world over the past decades and collectively form the 'International' PTA (IPTA). In this paper, we describe the first joint analysis of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the available PTA data, the approach presently followed for its combination and suggest improvements for future PTA research. Particular attention is paid to subtle details (such as underestimation of measurement uncertainty and long-period noise) that have often been ignored but which become important in this unprecedentedly large and inhomogeneous data set. We identify and describe in detail several factors that complicate IPTA research and provide recommendations for future pulsar timing efforts. The first IPTA data release presented here (and available on-line) is used to demonstrate the IPTA's potential of improving upon gravitational-wave limit
Limits on anisotropy in the nanohertz stochastic gravitational-wave background
The paucity of observed supermassive black hole binaries (SMBHBs) may imply
that the gravitational wave background (GWB) from this population is
anisotropic, rendering existing analyses sub-optimal. We present the first
constraints on the angular distribution of a nanohertz stochastic GWB from
circular, inspiral-driven SMBHBs using the European Pulsar Timing Array
data [Desvignes et al. (in prep.)]. Our analysis of the GWB in the nHz band shows consistency with isotropy, with the strain amplitude in
spherical harmonic multipoles of the monopole value. We
expect that these more general techniques will become standard tools to probe
the angular distribution of source populations.Comment: 6 pages, 2 figures, 1 table. Accepted for publication in Physical
Review Letter
- …
