202 research outputs found
Solving multi-criteria decision problems under possibilistic uncertainty using optimistic and pessimistic utilities
International audienceThis paper proposes a qualitative approach to solve multi-criteria decision making problems under possibilistic uncertainty. De-pending on the decision maker attitude with respect to uncertainty (i.e. optimistic or pessimistic) and on her attitude with respect to criteria (i.e. conjunctive or disjunctive), four ex-ante and four ex-post decision rules are dened and investigated. In particular, their coherence w.r.t. the principle of monotonicity, that allows Dynamic Programming is studied
Freshly ionized matter around the final Helium shell flash object V4334 Sgr (Sakurai's object)
We report on the discovery of recently ionized hydrogen-deficient gas in the
immediate circumstellar environment of the final helium shell flash star V4334
Sgr (Sakurai's object). On spectra obtained with FORS2 multi-object
spectroscopy we have found spatially extended (about 2") emission from [N II],
[O I], [O II] and very faint Halpha and [S II]. In the [N II] (ll6548,83) lines
we have identified two components located at velocities -350 +/-50 and +200
+/-50 km/s, relative to V4334 Sgr itself. The full width of the [N II] l6583
feature at zero intensity corresponds to a velocity spread of about 1500 km/s.
Based on the available data it is not possible to conclusively determine the
mechanism of ionization. Both photo-ionization, from a rapidly evolving central
star, and shock excitation, as the result of the collision of the fast ouflows
with slower circumstellar matter, could account for the observed lines. The
central star is still hidden behind strong dust absorption, since only a faint
highly reddened continuum is apparent in the spectra. Theory states that it
will become hotter and will retrace its post-asymptotic giant branch evolution
towards the planetary nebula domain. Our detection of the ionized ejecta from
the very late helium shell flash marks the beginning of a new phase in this
star's amazingly rapid evolution.Comment: 11 pages, 2 figures. Accepted by ApJ
Far-UV Spectroscopic Analyses of Four Central Stars of Planetary Nebulae
We analyze the Far-UV/UV spectra of four central stars of planetary nebulae
with strong wind features -- NGC 2371, Abell 78, IC 4776 and NGC 1535, and
derive their photospheric and wind parameters by modeling high-resolution FUSE
(Far-Ultraviolet Spectroscopic Explorer) data in the Far-UV and HST-STIS and
IUE data in the UV with spherical non-LTE line-blanketed model atmospheres.
Abell 78 is a hydrogen-deficient transitional [WR]-PG 1159 object, and we find
NGC 2371 to be in the same stage, both migrating from the constant-luminosity
phase to the white dwarf cooling sequence with Teff ~= 120 kK, Mdot ~= 5x10^-8
Msun/yr. NGC 1535 is a ``hydrogen-rich'' O(H) CSPN, and the exact nature of IC
4776 is ambiguous, although it appears to be helium burning. Both objects lie
on the constant-luminosity branch of post-AGB evolution and have Teff ~= 65 kK,
Mdot ~= 1x10^-8 Msun/yr. Thus, both the H-rich and H-deficient channels of PN
evolution are represented in our sample. We also investigate the effects of
including higher ionization stages of iron (up to FeX) in the model atmosphere
calculations of these hot objects (usually neglected in previous analyses), and
find iron to be a useful diagnostic of the stellar parameters in some cases.
The Far-UV spectra of all four objects show evidence of hot (T ~ 300 K)
molecular hydrogen in their circumstellar environments.Comment: 38 pages, 8 figures (6 color). Accepted for publication in Ap
3D Spectrophotometry of Planetary Nebulae in the Bulge of M31
We introduce crowded field integral field (3D) spectrophotometry as a useful
technique for the study of resolved stellar populations in nearby galaxies. As
a methodological test, we present a pilot study with selected extragalactic
planetary nebulae (XPN) in the bulge of M31, demonstrating how 3D spectroscopy
is able to improve the limited accuracy of background subtraction which one
would normally obtain with classical slit spectroscopy. It is shown that due to
the absence of slit effects, 3D is a most suitable technique for
spectrophometry. We present spectra and line intensities for 5 XPN in M31,
obtained with the MPFS instrument at the Russian 6m BTA, INTEGRAL at the WHT,
and with PMAS at the Calar Alto 3.5m Telescope. Using 3D spectra of bright
standard stars, we demonstrate that the PSF is sampled with high accuracy,
providing a centroiding precision at the milli-arcsec level. Crowded field 3D
spectrophotometry and the use of PSF fitting techniques is suggested as the
method of choice for a number of similar observational problems, including
luminous stars in nearby galaxies, supernovae, QSO host galaxies,
gravitationally lensed QSOs, and others.Comment: (1) Astrophysikalisches Institut Potsdam, (2) University of Durham.
18 pages, 11 figures, accepted for publication in Ap
A Young Stellar Cluster in the Nucleus of NGC 4449
We have obtained 1-2 A resolution optical Echellette spectra of the nuclear
star cluster in the nearby starburst galaxy NGC 4449. The light is clearly
dominated by a very young (6-10 Myr) population of stars. For our age dating,
we have used recent population synthesis models to interpret the observed
equivalent width of stellar absorption features such as the HI Balmer series
and the CaII triplet around 8500 A. We also compare the observed spectrum of
the nuclear cluster to synthesized spectra of simple stellar populations of
varying ages. All these approaches yield a consistent cluster age. Metallicity
estimates based on the relative intensities of various ionization lines yield
no evidence for significant enrichment in the center of this low mass galaxy:
the metallicity of the nuclear cluster is about one fourth of the solar value,
in agreement with independent estimates for the disk material of NGC 4449.Comment: 24 pages (incl. 7 figures), accepted by AJ, March 2001 issue revised
version with minor changes and additions, one additional figur
Abell 41: shaping of a planetary nebula by a binary central star?
We present the first detailed spatio-kinematical analysis and modelling of
the planetary nebula Abell 41, which is known to contain the well-studied
close-binary system MT Ser. This object represents an important test case in
the study of the evolution of planetary nebulae with binary central stars as
current evolutionary theories predict that the binary plane should be aligned
perpendicular to the symmetry axis of the nebula.
Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained
using ACAM on the William Herschel Telescope, has been used to investigate the
ionisation structure of Abell 41. Longslit observations of the H-alpha and
[NII] emission were obtained using the Manchester Echelle Spectrometer on the
2.1-m San Pedro M\'artir Telescope. These spectra, combined with the narrowband
imagery, were used to develop a spatio-kinematical model of [NII] emission from
Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar
structure with an expansion velocity of ~40km\s at the waist. The symmetry axis
of the model nebula is within 5\degr of perpendicular to the orbital plane of
the central binary system. This provides strong evidence that the close-binary
system, MT Ser, has directly affected the shaping of its nebula, Abell 41.
Although the theoretical link between bipolar planetary nebulae and binary
central stars is long established, this nebula is only the second to have this
link, between nebular symmetry axis and binary plane, proved observationally.Comment: 7 pages, 6 figures, Accepted for publication in MNRA
The enigmatic central star of the planetary nebula PRTM 1
The central star of the planetary nebula PRTM 1 (PN G243.8-37.1) was
previously found to be variable by M. Pena and colleagues. As part of a larger
programme aimed towards finding post common-envelope binary central stars we
have monitored the central star of PRTM 1 spectroscopically and photometrically
for signs of variability. Over a period of ~3 months we find minimal radial
velocity (<10 km/s) and photometric (< 0.2 mag) variability. The data suggest a
close binary nucleus can be ruled out at all but the lowest orbital
inclinations, especially considering the spherical morphology of the nebula
which we reveal for the first time. Although the current data strongly support
the single star hypothesis, the true nature of the central star of PRTM 1
remains enigmatic and will require further radial velocity monitoring at higher
resolution to rule out a close binary. If in the odd case that it is a close
binary, it would be the first such case in a spherical planetary nebula, in
contradiction to current thinking.Comment: A&A, in pres
Central Stars of Planetary Nebulae in the Large Magellanic Cloud: A Far-UV Spectroscopic Analysis
We observed seven central stars of planetary nebulae (CSPN) in the Large
Magellanic Cloud (LMC) with the Far Ultraviolet Spectroscopic Explorer (FUSE),
and performed a model-based analysis of these spectra in conjunction with
Hubble Space Telescope (HST) spectra in the UV and optical range to determine
the stellar and nebular parameters. Most of the objects show wind features, and
they have effective temperatures ranging from 38 to 60 kK with mass-loss rates
of ~= 5x10^-8 Msun/yr. Five of the objects have typical LMC abundances. One
object (SMP LMC 61) is a [WC4] star, and we fit its spectra with He/C/O-rich
abundances typical of the [WC] class, and find its atmosphere to be
iron-deficient. Most objects have very hot (T ~> 2000 K) molecular hydrogen in
their nebulae, which may indicate a shocked environment. One of these (SMP LMC
62) also displays OVI 1032-38 nebular emission lines, rarely observed in PN.Comment: 53 pages, 15 figures (11 color). Accepted for publication in Ap
An Aromatic Inventory of the Local Volume
Using infrared photometry from the Spitzer Space Telescope, we perform the
first inventory of aromatic feature emission (AFE, but also commonly referred
to as PAH emission) for a statistically complete sample of star-forming
galaxies in the local volume. The photometric methodology involved is
calibrated and demonstrated to recover the aromatic fraction of the IRAC 8
micron flux with a standard deviation of 6% for a training set of 40 SINGS
galaxies (ranging from stellar to dust dominated) with both suitable
mid-infrared Spitzer IRS spectra and equivalent photometry. A potential factor
of two improvement could be realized with suitable 5.5 and 10 micron
photometry, such as what may be provided in the future by JWST. The resulting
technique is then applied to mid-infrared photometry for the 258 galaxies from
the Local Volume Legacy (LVL) survey, a large sample dominated in number by
low-luminosity dwarf galaxies for which obtaining comparable mid-infrared
spectroscopy is not feasible. We find the total LVL luminosity due to five
strong aromatic features in the 8 micron complex to be 2.47E10 solar
luminosities with a mean volume density of 8.8E6 solar luminosities per cubic
Megaparsec. Twenty-four of the LVL galaxies, corresponding to a luminosity cut
at M = -18.22 in the B band, account for 90% of the aromatic luminosity. Using
oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies,
we find a correlation between metallicity and the aromatic to total infrared
emission ratio but not the aromatic to total 8 micron dust emission ratio. A
possible explanation is that metallicity plays a role in the abundance of
aromatic molecules relative to the total dust content, but other factors such
as star formation and/or the local radiation field affect the excitation of
those molecules.Comment: ApJ in press; 29 pages, 14 figures, 3 tables; emulateapj forma
IPHAS and the symbiotic stars. I. Selection method and first discoveries
The study of symbiotic stars is essential to understand important aspects of
stellar evolution in interacting binaries. Their observed population in the
Galaxy is however poorly known, and is one to three orders of magnitudes
smaller than the predicted population size. IPHAS, the INT Photometric Halpha
survey of the Northern Galactic plane, gives us the opportunity to make a
systematic, complete search for symbiotic stars in a magnitude-limited volume,
and discover a significant number of new systems.
A method of selecting candidate symbiotic stars by combining IPHAS and
near-IR (2MASS) colours is presented. It allows us to distinguish symbiotic
binaries from normal stars and most of the other types of Halpha emission line
stars in the Galaxy. The only exception are T Tauri stars, which can however be
recognized because of their concentration in star forming regions. Using these
selection criteria, we discuss the classification of a list of 4338 IPHAS stars
with Halpha in emission. 1500 to 2000 of them are likely to be Be stars. Among
the remaining objects, 1183 fulfill our photometric constraints to be
considered candidate symbiotic stars. The spectroscopic confirmation of three
of these objects, which are the first new symbiotic stars discovered by IPHAS,
proves the potential of the survey and selection method.Comment: Accepted for publication on Astronomy and Astrophysics. 12 pages, 8
figure
- …
