5,914 research outputs found
Outer crust of a cold non-accreting magnetar
The outer crust structure and composition of a cold, non-accreting magnetar
is studied. We model the outer crust to be made of fully equilibrated matter
where ionized nuclei form a Coulomb crystal embedded in an electron gas. The
main effects of the strong magnetic field are those of quantizing the electron
motion in Landau levels and of modifying the nuclear single particle levels
producing, on average, an increased binding of nucleons in nuclei present in
the Coulomb lattice. The effect of an homogeneous and constant magnetic field
on nuclear masses has been predicted by using a covariant density functional,
in which induced currents and axial deformation due to the presence of a
magnetic field that breaks time-reversal symmetry have been included
self-consistently in the nucleon and meson equations of motion. Although not
yet observed, for G both effects contribute to produce
different compositions and to enlarge the range of pressures typically present
in common neutron stars. Specifically, in such a regime, the magnetic field
effects on nuclei favor the appearance of heavier nuclei at low pressures. As
increases, such heavier nuclei are also preferred up to larger pressures.
In the most extreme case, the whole outer crust is almost made of
Zr.Comment: Published versio
Informe del IX Simpòsium Europeu sobre El laboratori clínic i la indústria del diagnòstic in vitro: "Les anàlisis urgents als laboratoris clínics"
Sensitivity of the electric dipole polarizability to the neutron skin thickness in Pb
The static dipole polarizability, , in Pb has been
recently measured with high-resolution via proton inelastic scattering at the
Research Center for Nuclear Physics (RCNP). This observable is thought to be
intimately connected with the neutron skin thickness, , of the
same nucleus and, more fundamentally, it is believed to be associated with the
density dependence of the nuclear symmetry energy. The impact of
on in Pb is investigated and discussed on the basis
of a large and representative set of relativistic and non-relativistic nuclear
energy density functionals (EDF).Comment: Proceedings of NSD12, Opatija, Croatia, 9-13 July 201
Recoverin Regulates Light-dependent Phosphodiesterase Activity in Retinal Rods
The Ca2+-binding protein recoverin may regulate visual transduction in retinal rods and cones, but its functional role and mechanism of action remain controversial. We compared the photoresponses of rods from control mice and from mice in which the recoverin gene was knocked out. Our analysis indicates that Ca2+-recoverin prolongs the dark-adapted flash response and increases the rod's sensitivity to dim steady light. Knockout rods had faster Ca2+ dynamics, indicating that recoverin is a significant Ca2+ buffer in the outer segment, but incorporation of exogenous buffer did not restore wild-type behavior. We infer that Ca2+-recoverin potentiates light-triggered phosphodiesterase activity, probably by effectively prolonging the catalytic activity of photoexcited rhodopsin
Development and validation of the Spanish hazard perception test
Objective: The aim of the current study is to develop and obtain validity evidence for a Hazard Perception test suitable for the Spanish driving population. To obtain validity evidence to support the use of the test, the effect of hazardous and quasi-hazardous situations on the participants’ Hazard Prediction is analysed and the pattern of results of drivers of different driving experience: learner, novice and expert drivers and re-offender vs. non-offender drivers, is compared. Potentially hazardous situations are those that develop without involving any real hazard (i.e., the driver didn’t actually have to decelerate or make any evasive manoeuvre to avoid a potential collision). The current study analysed multiple offender drivers attending compulsory re-education programmes as a result of reaching the maximum number of penalty points on their driving licence, due to repeated violations of traffic laws. Method: A new video-based hazard perception test was developed, using a total of 20 hazardous situation videos plus 8 quasi-hazardous situation videos. They were selected from 167 recordings of natural hazards in real Spanish driving settings
Giant Quadrupole Resonances in 208Pb, the nuclear symmetry energy and the neutron skin thickness
Recent improvements in the experimental determination of properties of the
Isovector Giant Quadrupole Resonance (IVGQR), as demonstrated in the A=208 mass
region, may be instrumental for characterizing the isovector channel of the
effective nuclear interaction. We analyze properties of the IVGQR in 208Pb,
using both macroscopic and microscopic approaches. The microscopic method is
based on families of non-relativistic and covariant Energy Density Functionals
(EDF), characterized by a systematic variation of isoscalar and isovector
properties of the corresponding nuclear matter equations of state. The
macroscopic approach yields an explicit dependence of the nuclear symmetry
energy at some subsaturation density, for instance S(\rho=0.1 fm^{-3}), or the
neutron skin thickness \Delta r_{np} of a heavy nucleus, on the excitation
energies of isoscalar and isovector GQRs. Using available data it is found that
S(\rho=0.1 fm{}^{-3})=23.3 +/- 0.6 MeV. Results obtained with the microscopic
framework confirm the correlation of the \Delta r_{np} to the isoscalar and
isovector GQR energies, as predicted by the macroscopic model. By exploiting
this correlation together with the experimental values for the isoscalar and
isovector GQR energies, we estimate \Delta r_{np} = 0.14 +/- 0.03 fm for 208Pb,
and the slope parameter of the symmetry energy: L = 37 +/- 18 MeV
How different Fermi surface maps emerge in photoemission from Bi2212
We report angle-resolved photoemission spectra (ARPES) from the Fermi energy
() over a large area of the () plane using 21.2 eV and 32 eV
photons in two distinct polarizations from an optimally doped single crystal of
BiSrCaCuO (Bi2212), together with extensive
first-principles simulations of the ARPES intensities. The results display a
wide-ranging level of accord between theory and experiment and clarify how
myriad Fermi surface (FS) maps emerge in ARPES under various experimental
conditions. The energy and polarization dependences of the ARPES matrix element
help disentangle primary contributions to the spectrum due to the pristine
lattice from those arising from modulations of the underlying tetragonal
symmetry and provide a route for separating closely placed FS sheets in low
dimensional materials.Comment: submitted to PR
La necrópolis romana del Osireion. Oxirrinc, El-Bahnasa, Egipto. Estudio de los individuos 15628, 15637 y 15701-1
X Congreso Nacional de Paleopatología. Univesidad Autónoma de Madrid, septiembre de 200
- …
