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Abstract. The static dipole polarizability, αD, in 208Pb has been recently measured with high-
resolution via proton inelastic scattering at the Research Center for Nuclear Physics (RCNP) [1].
This observable is thought to be intimately connected with the neutron skin thickness, rskin, of the
same nucleus and, more fundamentally, it is believed to be associated with the density dependence
of the nuclear symmetry energy. The impact of rskin on αD in 208Pb is investigated and discussed on
the basis of a large and representative set of relativistic and non-relativistic nuclear energy density
functionals (EDF) [2].
Keywords: electric dipole polarizability, neutron nuclear symmetry energy, energy density func-
tionals
PACS: 21.60.Jz, 21.65.Cd, 21.65.Mn

INTRODUCTION

The Lead Radius Experiment (PREX) [3, 4] has recently measured rskin, defined as the
difference between the neutron and proton root mean square radii, of 208Pb [5]. This
experiment is performed via parity-violating electron scattering [6] and provides the
first purely electroweak measurement of the neutron distribution of a heavy nucleus.
The neutron skin is strongly dependent on the isovector properties of nuclei and impacts
on a variety of areas such as nuclear structure [7, 8, 9, 10, 11], atomic parity violation
[12], and neutron-star structure [13, 14]. By measuring the neutron form factor of 208Pb
at q≈ 0.475 fm−1, PREX was able to determine rskin = 0.33+0.16−0.18 fm [5].
Alternatively, although the estimation of the neutron distribution in nuclei based on

measurements using hadronic probes are model dependent and display large theoretical
uncertainties [15, 16], the use of these probes for the direct or indirect determination
of such an observable is nowadays growing due to the necessity of improving our
knowledge in the isovector channel of the nuclear effective interaction [17, 18, 19,
20, 21]. The analysis from recent experiments have led to values for rskin = 0.16±
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(0.02)stat± (0.04)syst fm [18] and rskin = 0.211+0.054−0.063 fm [21] in
208Pb.

The electric dipole polarizability, αD, is another observable sensitive to the
isovector properties of the nuclear effective interaction. This quantity is obtainable
from the linear response of the system to an external dipolar field of the form,
FD = (Z/A)∑Ni rnY1M(r̂n) − (N/A)∑Zi rpY1M(r̂p), being N, Z, A, r j with j = n or
p and Y (r̂ j) the neutron, proton and mass numbers, the radial position of the
j−th nucleon and the spherical harmonic, respectively. If |0〉 is the ground state
and |ν〉 is a complete set of excited states, the polarizability can be written as
follows, αD = (8π/9)e2m−1 = (8π/9)e2∑ν(|〈ν|FD|0〉|2/ων) where m−1 is the in-
verse energy weighted sum rule or inverse energy moment of the strength function,
RE1(ω) = ∑ν |〈ν|FD|0〉|2δ (ω −ων) which evaluates the dipole response. For stable
medium and heavy nuclei, the dipole response is largely concentrated in the giant dipole
resonance (GDR) [22]. In this isovector mode, commonly viewed as an oscillation of
neutrons against protons, the symmetry energy at some sub-saturation density acts as
the restoring force [23]. In addition, it is important to notice that the possible presence
of a low-lying dipole strength may has a non negligible effect on αD [24, 25, 26].
Actually, rskin is expected to be linearly correlated with αD based on both macro-

scopic arguments [27, 28] and microscopic calculations [10, 24]. The high-resolution
measurement at RCNP of the E1 strength distribution RE1(ω), where ω is the excitation
energy, in 208Pb [1] has allowed to deduce the experimental value of αD = 20.1± 0.6
fm3. Actually, Tamii et al. [1], relying on the predictions of one single EDF [29] de-
duced a value of rskin = 0.156+0.025−0.021 fm for

208Pb. However, systematic errors were not
estimated. Motivated by the interesting physics behind this observable, we present an
exhaustive analysis of the correlation between αD and rskin in 208Pb within a large set of
EDFs (see Ref. [2] for more details).

RESULTS

In this contribution, we present our recent results on the correlation between rskin and αD
in 208Pb using a representative set of both relativistic and non-relativistic EDFs [2]. In
all cases, these self-consistent models have been calibrated to selected global properties
of finite nuclei and infinite nuclear matter. These models have been used without any
further adjustment to compute RE1 using the consistent random-phase approximation
(RPA).
We have chosen 48 EDFs and show their predictions in Fig. 1 (for details and original

references see Ref. [2]). The up triangles correspond to Skyrme EDFs that have been
widely used in the literature and fitted using very different protocols. In addition, we
found interesting to analyze the predictions of three different families of relativistic
(squares) and Skyrme EDFs (circles and down triangles) in which the value of the
symmetry energy have been systematically varied around an optimal model (depicted
by a star in Fig. 1). All the models within a family remain still accurate although their
departure from the optimal model. This is basically due to the fact that the isovector
channel of the nuclear interaction is not tightly constrained by available data.
Although some scatter is shown in Fig. 1, the approximate linear relation between αD

and rskin discussed above is roughly confirmed by the different models. Specifically, the
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FIGURE 1. αD and rskin of 208Pb as predicted by 48 nuclear EDFs (see [2] for more details). Constrains
on rskin from PREX [5] and on αD from RCNP [1] are also shown.

predicted linear correlation coefficient is around 0.8 when all the 48 models are taken
into account while it is close to one when specific families of interactions are considered
separately. The exception to this rule comes from the subset of Skyrme interactions that
do not belong to a family of systematically varied interactions (black circles). This points
to the fact that other quantities that do not appreciably vary in the different families
of interactions are, indeed, affecting the value of αD. It might be the case of some
(isoscalar) properties that are almost constant within each one of the families and change
when one looks at different families. This should be further investigated.
In Fig. 1, the constrains on rskin from PREX [5] and on αD from RCNP [1] are also

shown. By looking at the models that are compatible with the RCNP measurement,
we perform an average of our theoretical results and obtain a rskin = 0.168±0.022 fm.
Almost all theoretical predictions that agree with αD (within the experimental error bars)
are consistent with the value of rskin measured by PREX.

SUMMARY AND CONCLUSIONS

We have analyzed the correlation between αD and rskin in 208Pb using a large set of
representative EDFs. Macroscopic analyses suggest that these two observables should be
correlated. We have seen that in our study, that within families of accurately calibrated
models a strong correlation between rskin and αD in 208Pb arise. When these models
are combined and more differences appear between them, the correlation weakens. We
have estimated the model or theoretical systematic error of rskin compatible with the
measurement at RCNP and found that the obtained value is compatible but still far from
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the central value obtained by PREX.
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