1,269 research outputs found
Freeze-out volume in multifragmentation - dynamical simulations
Stochastic mean-field simulations for multifragmenting sources at the same
excitation energy per nucleon have been performed. The freeze-out volume, a
concept which needs to be precisely defined in this dynamical approach, was
shown to increase as a function of three parameters: freeze-out instant,
fragment multiplicity and system size.Comment: Submitted to Eur. Phys. J. A - march 200
New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions
A previous analysis of the charge (Z) correlations in the
plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the
production of equally sized fragments (low ) which was interpreted as
an evidence for spinodal decomposition. However the signal is weak and rises
the question of the estimation of the uncorrelated yield. After a critical
analysis of its robustness, we propose in this paper a new technique to build
the uncorrelated yield in the charge correlation function. The application of
this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not
show any particular enhancement of the correlation function in any
bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor
changes. To appear in Nuclear Physics
Stopping of energetic sulfur and bromine ions in dense hydrogen plasma
The concepts of communicative space, media sphere and public sphere are sometimes used like synonyms one of the other. However, according to us, they are three different concepts: public sphere and media sphere are two distinct spaces symbolic systems which, both, are anchored in communicative spac
Near-Earth asteroid (3200) Phaethon. Characterization of its orbit, spin state, and thermophysical parameters
The near-Earth asteroid (3200) Phaethon is an intriguing object: its
perihelion is at only 0.14 au and is associated with the Geminid meteor stream.
We aim to use all available disk-integrated optical data to derive a reliable
convex shape model of Phaethon. By interpreting the available space- and
ground-based thermal infrared data and Spitzer spectra using a thermophysical
model, we also aim to further constrain its size, thermal inertia, and visible
geometric albedo. We applied the convex inversion method to the new optical
data obtained by six instruments and to previous observations. The convex shape
model was then used as input for the thermophysical modeling. We also studied
the long-term stability of Phaethon's orbit and spin axis with a numerical
orbital and rotation-state integrator. We present a new convex shape model and
rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and
ecliptic coordinates of the preferred pole orientation of (319,
39) with a 5 uncertainty. Moreover, we derive its size
(=5.10.2 km), thermal inertia (=600200 J m
s K), geometric visible albedo
(=0.1220.008), and estimate the macroscopic surface
roughness. We also find that the Sun illumination at the perihelion passage
during the past several thousand years is not connected to a specific area on
the surface, which implies non-preferential heating.Comment: Astronomy and Astrophysics. In pres
Advancement in the understanding of multifragmentation and phase transition for hot nuclei
Recent advancement on the knowledge of multifragmentation and phase
transition for hot nuclei is reported. It concerns i) the influence of radial
collective energy on fragment partitions and the derivation of general
properties of partitions in presence of such a collective energy, ii) a better
knowledge of freeze-out properties obtained by means of a simulation based on
all the available experimental information and iii) the quantitative study of
the bimodal behaviour of the heaviest fragment charge distribution for
fragmenting hot heavy quasi-projectiles which allows, for the first time, to
estimate the latent heat of the phase transition.Comment: 9 pages, Proceedings of IWM09, November 4-7, Catania (Italy
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
Estimate of average freeze-out volume in multifragmentation events
An estimate of the average freeze-out volume for multifragmentation events is
presented. Values of volumes are obtained by means of a simulation using the
experimental charged product partitions measured by the 4pi multidetector INDRA
for 129Xe central collisions on Sn at 32 AMeV incident energy. The input
parameters of the simulation are tuned by means of the comparison between the
experimental and simulated velocity (or energy) spectra of particles and
fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure
Photometric quality of Dome C for the winter 2008 from ASTEP South
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South
pole field, from the Concordia station, Dome C, Antarctica. The instrument
consists of a thermalized 10 cm refractor observing a fixed 3.88\degree x
3.88\degree field of view to perform photometry of several thousand stars at
visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the
retrieval of nearly 1600 hours of data. We derive the fraction of photometric
nights by measuring the number of detectable stars in the field. The method is
sensitive to the presence of small cirrus clouds which are invisible to the
naked eye. The fraction of night-time for which at least 50% of the stars are
detected is 74% from June to September 2008. Most of the lost time (18.5% out
of 26%) is due to periods of bad weather conditions lasting for a few days
("white outs"). Extended periods of clear weather exist. For example, between
July 10 and August 10, 2008, the total fraction of time (day+night) for which
photometric observations were possible was 60%. This confirms the very high
quality of Dome C for nearly continuous photometric observations during the
Antarctic winter
- …
