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Abstract Stochastic mean-field simulations for multifragmenting sources at the same excitation energy per
nucleon have been performed. The freeze-out volume, a concept which needs to be precisely defined in this
dynamical approach, was shown to increase as a function of three parameters: freeze-out instant, fragment

multiplicity and system size.

ar 2005

2 1 Introduction

Several hundreds of nucleons may be brought into inter-
! action in central heavy ion collisions around the Fermi
energy. Such reactions are good candidates to provoke a

C liquid-gas type phase transition - conceivable given the

O nature of the nuclear force - and to break the system into

) massive fragments [M,B). The volume of such a source of

a-)ejectﬂes at the instant when all of them become free of

the attractive force and feel only the Coulomb repulsion -
> the freeze — out volume - brings information on the coex-
yistence of phases. It is a key quantity [E] to be connected

[N to the physical observables, asymptotically measured. If

(Y) in the statistical models [@,E,E, it is a basic apriori hy-

<I pothesis, in the following dynamical treatment this volume
is provided - at a given available energy - as a family of
results illustrating the temporal and spatial evolution of

Q the source in multifragmentation.

Ol Nuclear multifragmentation may occur when the source
has expanded through the spinodal region of negative com-
pressibility [[] of the liquid-gas coexistence domain, a sce-

Q nario valid for other many-body systems too [§,d]. Related
Stochastic Mean Field (SMF) approaches [[L0}[L1,[[F] con-
sider, under different approximations, the amplification of
density fluctuations, due to N-body correlations, by the
unstable mean field leading to spinodal decomposition.
The Brownian One-Body (BOB) dynamics version, simu-
lating the fluctuations by means of a brownian force in the
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b Present address: Cyclotron Institute, Texas A&M Univer-
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AMeV; 28U(15Gd, X), E = 36 AMeV; central collisions; multifragmenting sources; stochastic mean-field
simulations; dynamical evolution of the freeze-out volume.

mean field [E,@,E], coupled to Boltzmann-Nordheim-
Vlasov (BNV) one-body density calculations [[[4], was suc-
cessfully confronted with multifragmentation data mea-
sured with the 47 multidetector INDRA [[L]. Two systems
at close available energy per nucleon ~ 7 MeV, were exper-
imentally studied: 32 AMeV '29Xe + "%*Sn and 36 AMeV
1%5Gd + "tU 29, 7,8, L9 A.R1.RT). The comparison be-
tween simulated events for central collisions - filtered ac-
cording to the experimental features of INDRA - and the
experimental data was recently extended from fragment
multiplicity M, charge Z, largest charge Z,,4, and bound
charge Zyouna = X Z distributions [@] to charge [@,]
and velocity correlation functions and energy spectra [R2).
The theoretical approaches developed in relation with the
advanced experimental methods of nuclear physics may
be esteemed in the new and more general physics of the
phase transition in finite systems [B, E,@]

As a reasonably successful dynamical description of
the multifragmentation process at intermediate bombard-
ing energies, the above mentioned three dimensional (3D)
SMF simulations provide a well adapted framework to
address the question of the freeze-out volume. We focus
in the present paper on disentangling the time, fragment
multiplicity and source size of the freeze-out volume de-
pendence. A pragmatical definition of the freeze-out in-
stant is proposed.
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2 Expanding sources provided by BOB
simulations

SMF simulations of nucleus-nucleus collisions based on the
Boltzmann-Langevin equation were proposed to treat un-
stable systems h,@, but their application to 3D nu-
clear collisions is prohibited by computational limitations.
Instead, the spinodal decomposition of two diluted nuclear
sources, mentioned above, at the same temperature (=~ 4
MeV), was mimicked through the BOB dynamics @, 5
E], applicable to locally equilibrated systems. The brow-
nian force employed in the kinetic equations is grafted on
to the one-body density evolution, calculated in a BNV
approach [@], at the moment of maximum compression
to = 40 fm/c after the beginning of the collision, before
the entrance of the system into the spinodal region. Its
strength can be tuned to describe the growth of the most
important unstable modes, ascribed to the density fluc-
tuations, which need a short, but finite time to develop.
The dispersion relation [@] puts them in evidence. It in-
cludes quantal effects and connects the characteristic time
to its associated multipolarity. In turn, the multipolarity
of the unstable collective modes, increasing with the size
of the source, may be related to the fragment multiplicity
[@,@] The delimitation between fragments - the ”liquid
drops” - and light clusters - ”the gas” - in which they are
embedded is given by a cut-off value ppin > 0.01fm =2 of
the nuclear density p [1§.

The ingredients of the simulations, corresponding to
zero impact parameter, as well as the selection criteria
for the complete events from experimental central colli-
sions, can be found in [@,@] The fragments are defined
as having the atomic number Z > 5. In the reported cal-
culation, as in the experimental selection, only events hav-
ing the final fragment multiplicity M > 3 were considered
[Lg]. The calculated total charge of the multifragment-
ing sources in the spinodal zone, Z;,; = 100 for 1?Xe +
198y and Z;,; = 142 for 1%°Gd + 238U are close to the
experimentally reconstructed ones [@], INDRA identifies
the mass of the light charged products (Z < 5) but not
that of the fragments. The Skyrme force used in our sim-
ulations is not isospin dependent. Consequently, the mass
numbers of the sources: A;,; = 238 (for the light one) and
Atot = 360 (for the heavy one) correspond to the con-
servation of the entrance channel N/Z ratio. The charge
distributions (normalized to the fragment multiplicity of
the event) measured [@] or simulated in BOB calculations
[B], are identical in the two cases - consistent with a bulk
effect in the involved multifragmentation process.

Starting from the two initial partners of the reaction,
the BNV calculation leads to a spherical distribution of
matter. It undergoes a self-similar expansion, which is
not dramatically altered by the BOB simulations - Fig.
. The simulated sources continue their rather isotropi-
cal 3D expansion in time, no particularly elongated or flat
shapes being produced. The concept of a radially symmet-
ric freeze-out volume keeps its full sense, provided that the
related instant may be singularized.
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Figure 1. One event density evolution for each of the two
multifragmenting sources: Aot = 238 - upper panel - and Aot
= 360 - lower panel. The collision direction in the entrance
channel is along Z axis and the unit is fm on both axes of
these X - Z views. The centre of mass coordinates are X = Z
= 20 fm.

2.1 The freeze-out instant definition

The fragments are not all formed at the same moment,
their mean multiplicity increasing in time, up to ~ 250
fm/c [[I§ when it saturates at a value of about 5 for the
lighter source (Z:: = 100, Ao = 238) associated to the
Xe + Su reaction, and of about 8 for the heavier one (Z;,;
= 142, A:»x = 360) associated to the Gd + U reaction.
Indeed, even for the same final multiplicity of a source,
there are events where the density fluctuations grow up
faster and others where the process is slower. A question
of definition appears related to the freeze-out instant. Our
BOB calculations are recorded in steps of time At = 20
fm/c starting from ¢o. Each event is traced back in steps of
20 fm/c from its asymptotical configuration (¢ ~ 250 fm/c)
of final multiplicity M to the moment when the fragment
multiplicity decreases one unit. We define the freeze-out
instant of an event as the moment when its final fragment
multiplicity M was established. It means that if at ¢;,_1 =
to + (i — 1)At the event has the multiplicity M — 1 and
at t; = tg + 1At it reaches the final multiplicity M, ¢; will
be considered as freeze-out instant. All events which got
their final multiplicity M at the moment t; are treated
together. Fig. E shows, as an example, the distribution
of the moments t = t; at which the final multiplicity M
= 5 was reached for the lighter source A,y = 238: t €
120, 260] fm/c.

2.2 Freeze-out configurations

For the sake of simplicity, the fragments are considered
as spheres of normal density, but the results are quite
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Figure 2. The distribution of the moments at which the final
multiplicity M = 5 was reached for the source having Aot =
238.

independent of this particular hypothesis. The relative
distance d;; between the surfaces of two fragments j, k
(j,k =1+ M and j # k) in one event, that will be called
the intra-fragment distance in the following, is much vary-
ing for a given final multiplicity M: from a minimum of
the order of 1 fm between the two most recently split-
ted fragments to a maximum value which increases with
t. This behaviour is shown - for the source (100,238) and
the multiplicity M = 5 - in the left-upper and left-middle
panels of Fig. E, at two different freeze-out instants: 180
and 240 fm/c. The distribution evolves towards larger dis-
tance values in time, from an asymmetric to a more sym-
metric shape. For the same two instants, the right-upper
and right-middle panels of Fig. E present the distributions
concerning the source (142,360) and M = 8. The evolu-
tion is similar to the lighter source case. Together with the
lower panels, related to the freeze-out instant ¢ = 180 fm/c
and the multiplicity M = 7 for both sources, the upper
graphs let also one see that, at the same moment (¢ = 180
fm/c), the mean value of the relative distance depends on
M for a given source, while for different sources and the
same multiplicity, e.g. M = 7, on the size of the source.
The distribution of the intra-fragment distances at a
certain moment is quite illustrative for the momentary
spatial configuration of the source: the shortest distances
concern the first order neighbours, the longest ones the
largest size of the sources and, above all, the intermediate
values are qualitatively informing about the dilution of the
source. The first and second order moments of the distri-
bution and their dynamical evolution are appropriate to
synthetize this last aspect. As expected, these quantities,
analysed multiplicity by multiplicity, are increasing with
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Figure 3. The distributions of relative distance d;i between
the surfaces of two fragments j, k, simulated event by event
and related to two sources: Aior = 238 - left column - and
Aot = 360 - right column, for various freeze-out instants and
multiplicities.

increasing t = t;, testifying on the enlargement of the mat-
ter distribution in the nuclear source in time. These values
are higher for the heavier source than for the lighter one,
and their increase in time seems to be slightly more pro-
nounced. The fact has to be put in connection with the
total Coulomb repulsion and the radial flow, higher for the
heavier system than for the lighter one ,@] An inter-
esting result is that, at constant values of ¢ = t;, the mean
and the variance of intra-fragment distance distributions
increase with the multiplicity - a little bit more accentu-
ated for the lighter system. The slope of this dependence
is higher at later moments t.

For each group of events reaching a final multiplicity
M at a certain moment ¢t = ¢;, one may look for the corre-
sponding local fragment concentration: dN /dV as a func-
tion of the vector radius absolute value r of the fragment
position in the source reference framework. Examples of
such distributions (at ¢ = 180 and 240 fm/c) are given
in the left-upper and left-middle panels of Fig. E for the
lighter source and M = 5. When the same source and final
multiplicity are involved, the mean radius 7 and full width
at half maximum (FW H M) increase with the time ¢t = t;
when the last two fragments are separated. In the right-
upper and right-middle panels of Fig. E are represented -
for the heavier source - the local fragment concentration
distributions at these two moments and the final multi-
plicity M = 8. As previously, the distribution evolves in
time towards larger radii; these radii are longer than in
case of the lighter source. For the same final multiplicity:
M = 7 and the same moment: ¢ = 180 fm/c - the distri-
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Figure 4. Radial distributions of the fragment concentration,
simulated event by event and related to two sources: Aipr =
238 - left column - and Aot = 360 - right column, for various
freeze-out instants and multiplicities.

butions represented in the lower panels for both systems
- the mean radius 7 and FWHM are longer in case of
the heavier source. The upper and the lower pannels to-
gether show that, for a given source at the same freeze-out
instant, 7 varies in the same sense as M.

Except the lowest multiplicity case for the lighter source
the radial distributions of the fragment concentration at
the freeze-out instant are practically empty towards short
radii, as shown in Fig. H They may be interpreted hence
as reminiscences of bubble-like configurations.

3 The freeze-out volume

Once the freeze-out instant defined and the configurations
when the latest formed fragments get free of nuclear inter-
action found, one may look for the corresponding volume.
A sphere of radius 7 + FWHM/2 englobes most of the
fragment centres. Its volume - a good estimate of the quan-
tity of interest - normalized at the volume Vo = (1.2)3 A0t
fm3 of the source at normal density pg, is considered as
a function of the freeze-out instant ¢ = ¢; at constant fi-
nal multiplicity M of fragments. It is represented with full
curves in the left column panels of Fig. ﬂ for the source
Aior = 238. The expansion of the source in time is ev-
idenced: the dynamic process delivering the same final
number M of fragments implies higher volumes if it takes
place at later instants. These volumes increase from top to
bottom with M, as well as the slopes of their variation. By
adding to the above spheres the complements of fragment
volumes which are exceeding them, one gains roughly 10%

At = 238 At = 360
10— 10—
C M=3 [ M=6
50— 50— L,
L - C P
o v b b g b b B
10— 10—
:M:4 :M:7
s ) s /
QD’H’\/\\HH\HH\HH ol i b by
NS 10— 10—
NS :M:S :M:S
> C C
5[ L~ = P
O’HT\\HH\HH\HH ol b b by
10— 10—
- M=6 CoM=9 /
50— 7 50— L
07\\\\‘\\\\‘\\\\‘\\\\ 07\\\\‘\\\\‘\\\\‘\\\\
10— 10—
Eow=7 o M=10 /
50— 50— T
07\\,\\\\\\\\\\ [ Di\\\\\\\\\\\\\\\\
10— 10—
[ M=8 :M:M
: :
50— 51— ’
NS NS NN NN N o N N N
100 150 200 250 300 100 150 200 250 300
t[fm/c] t[fm/c]

"’ Figure 5. Freeze-out volumes as a function of the freeze-out

instant, for two sources: Aot = 238 - left column - and Ator =
360 - right column. The full curves concern full spheres, while
the dashed ones correspond to hollow spherical envelopes (see
the text for explanations).

on the freeze-out values, but the general behaviour is not
changed.

In fact, as shown in Fig. @, the shapes of the frag-
ment concentration distributions at freeze-out are gener-
ally gaussian like. About 75% of their integral is hence
comprised between ¥ — FWHM/2 and 7 + FWHM/2.
The hollow envelopes delimited by the spheres with these
radii are a kind of lower limits of the corresponding freeze-
out volumes; always normalized at Vj, they are drawn as
dashed curves. The right column panels of Fig. E show
similar results for the source A;,; = 360. The curves seem
to rise slightly more rapidly than in the left column, in
relation with the Coulomb effect and the radial flow.

The evolution with the multiplicity of the freeze-out
volume defined above, calculated for full or hollow spheres
and normalized at the volume of the corresponding source
at normal density, is shown in Fig. fl at given freeze-out
moments. The dilution of the source increases with the
fragment multiplicity - slightly faster for the lighter sys-
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Figure 6. Freeze-out volumes as a function of multiplicity, at
different freeze-out instants, for two sources Aior = 238 - left
column - and A¢o: = 360 - right column. The full curves con-
cern full spheres, while the dashed ones correspond to hollow
spherical envelopes (see the text for explanations).

tem, presenting a higher relative variation of M (left col-
umn panels) than for the heavier one (right column pan-
els); the variation is more pronounced at larger times. It
reflects the mechanism considered here for the multifrag-
mentation: the density fluctuations. The separation of the
fragments in such an expanding source is reached on be-
half of the lower density domains: the larger the number of

fragments, the larger the number of zones between them.
Consequently, at the same freeze-out instant, the higher
the multiplicity, the bigger the source volume. From the
energetic point of view, a higher final fragment multiplic-
ity M implies a higher fraction of the excitation energy
consumed as binding (mainly surface) energy.

The freeze-out volumes provided by the present BOB
calculation, averaged over time and multiplicity, are, of
course, well fitting with those extracted, in the same frame-
work, by using the mean multiplicity information. The
corresponding densities p are compatible with the gen-
eral prediction pg/10 < p < po/2 of the Statistical Model
for Multifragmentation (SMM) [f], in particular with the
value pg/3 used to study - in a nonsphericity hypothesis in
this latter model - the fragment velocity correlations in the
32 AMeV 29Xe 4 ™*Sn system [@] The present density
values are lower than the average densities corresponding
to the same domain of excitation energy, extracted from
nuclear caloric curves [,@] The microcanonical model,
analysing - all multiplicities together - the same multifrag-
menting systems [ﬁ], leads to volume values close to the
present results but with a slightly lower dilution for the
heavier system than for the lighter one.

The increase of the freeze-out volume with the basic
experimental observable which is the fragment multiplicity
in an event is more pronounced than that obtained when
compacity criteria are used to fill the freeze-out domain
in a static scenario. For the first time, reliable values as
a function of time and final multiplicity are calculated.
They give a dynamical image of the multifragmentation
process at Fermi incident energies.

The final multiplicity of fragments is a measurable ob-
servable, while the time information is not directly ac-
cessible in the experiments. By weighting the freeze-out
volume values got at different freeze-out instants with re-
spect to the corresponding number of events, one may
obtain a kind of average freeze-out volume at a given final
multiplicity. This "time” averaged quantity, which looses
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Figure 7. As in Fig. E but for ”"time” averaged freeze-out
volumes; see the text for explenations.

much of its physical signification, indeed, is rapidly rising
with M, as shown for the two sources in Fig. []. The vari-
ety of fragment configurations, connected to the dynam-
ical fluctuations of the system volume on the fragmenta-
tion path, has been recently related to monopole oscilla-
tions [E] They may push the system towards a metastable
configuration which eventually recontracts leading to low
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fragment multiplicities, or develops into a hollow configu-
ration which fragments at higher multiplicities.

4 Conclusions

Stochatisc mean field simulations concerning the multi-
fragmenting sources formed in 32 AMeV 12?Xe + 119Sn
and 36 AMeV Gd + U reactions have been per-
formed. Their validity has already been checked ,@,@,
@] by reproducing measurable physical observables deter-
mined for these reactions with the 47 multidetector IN-
DRA. We found that the moment of separation of the
latest two nascent fragments - the definition adopted for
the freeze-out instant - is mainly distributed in the range
~ (150 — 250) fm/c; multifragmentation is a dynamical
process which is fast but needs a finite time. The topol-
ogy of the associated freeze-out configurations are more
complex but also more realistic as compared to the sim-
plifying hypothesis in which the fragments, separated by
a distance of the order of the nuclear interaction range,
are forced to fill in a prescribed volume, as generally done
in statistical codes.

The corresponding freeze-out volume could thus be dis-
entangled in connection with the freeze-out instant, final
fragment multiplicity and source size. For a given source
and a given multiplicity, the evolution of this quantity il-
lustrates the continuous expansion of the source in time.
On the other hand, at the same freeze-out instant, the vol-
ume of one source increases with the fragment multiplicity,
a basic measurable observable. As part of the energy as-
sociated to the internal degrees of freedom of the source is
going along into fragment separation energy, its volume is
dramatically increasing. And finally, for the same moment
and the same multiplicity, the freeze-out volume is bigger
for the heavier source, involving higher Coulomb repulsion
and radial flow.

The dilution of a multifragmenting source, quantified
as the ratio between its volume at freeze-out and its vol-
ume at normal density, is therefore increasing with time,
fragment multiplicity and source size. Further SMF sim-
ulations, employing an isospin dependent nuclear force,
would allow to study the isospin fractionation @, I, a
phenomenon expected to be amplified at high source dilu-
tion. A comparative experimental investigation of isoscal-
ing characteristics of these two systems prepared at the
same available energy is desirable too.
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