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The stopping power of sulfur and bromine ions traversing a fully ionized hydrogen plasma has been
determined by coupling a plasma target to the heavy ion beam of the Orsay Tandem accelerator. Measured
energy losses are well reproduced by the Standard Stopping Model and they clearly demonstrated the
enhanced stopping power of a plasma (free electrons) relative to cold matter (bound electrons). The
determination of mean effective charge state during the stopping process is discussed in relation to
theoretical predictions.

INTRODUCTION

Beam-plasma interaction experiments allow one to investigate a new domain of the
ion-matter interactions that is of fundamental interest for atomic physics and plasma
physics. Beyond the interest of fundamental investigations, the knowledge of the
energy deposition of intense beams in ionized matter is essential with respect to heavy
ion inertial confinement fusion (ICF) studies. In both cases of direct or indirect drive
for ICF scenario, the first step of the energy deposition on the ICF pellet corresponds
to a transfer of the kinetic energy of the incident beam in collective modes, generating
compression and heating of the pellet surface, and the stopping process takes place
in a corona plasma resulting from the rapid ablation of the target surface. Precise
knowledge of the energy deposition process is of prime importance in order to
determine the thickness of the target tamper.

There has been many theoretical approaches of this problem, but only a few
experimental data were available to confirm these theories. The experimental pro
gram described here presents a complete set of stopping power measurements
obtained during the last four years in a joint collaboration between French and
German laboratories.
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FIG URE 1 Temperature-density diagram for the plasmas in this study.

The basic idea was to couple an external plasma target to an accelerator beam
line and let the heavy ions flow through the plasma. This simulation of the interaction
between an intense ion beam and the ablation plasma is only valid because of the
so-called reduction principle l which stipulates that even with intense beams, the
average ion-ion distance within the beam remains two order of magnitude larger
than the electron Debye screening length. This effect suppresses largely collective
effects in the entrance channel, and allows one to treat the interaction as a simple
ion-electron or ion-ion collision.

Figure 1 shows the characteristics of the plasma target that have been involved in
these experiments.

In this temperature~density diagram, are reported experimental plasmas compared
to the ablation-compression plasma related to the ICF process. All these plasmas
are supposed to be relevant of typical classical, non-degenerated plasmas.

This paper is mainly devoted to interactions with a hydrogen plasma produced in
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linear discharge, which have been extensively studied during the first step of this
program. 2- 4

2 THEORETICAL BACKGROUND

Swift heavy ions penetrating into a plasma column interact mainly with free electrons,
inducing inelastic processes. The energy transfer is much more efficient than the
corresponding interaction with bound electrons. Two reasons explain such a beha
vior:

• Free electron orbitals show the most efficient stopping due to their flexibility to
respond to the incoming electrostatic field.

• The effective charge of the incident ion is rapidly increased up to the equilibrium
charge and recombination mechanisms are strongly inhibited.

The framework of the stopping standard model (SSM) consists of a generalization
of the well-known Bethe-Bohr-Bloch theory, extended to ion-plasma interaction.
Based on a few assumptions5 this model predicts a stopping power enhanced by
about a factor of two relative to the same conditions of electron density in cold
matter.

When the projectile velocity exceeds the thermal velocity of the free electrons in
the plasma (high-velocity approximation), the general expression of the stopping
power takes the form

-(dE/dx) = 4·(Z*e2)2nt./vl .L(~, Z*)

where z* is the mean ionization state of the ion during the stopping process, nt is
the plasma density, and ~ is the ion velocity. The stopping number L(Vi , Z*) includes
bound and free electron contributions L = Lg + L~ (atomic units):

Lg = Log 2vl/I
where I is the mean ionisation potential energy for hydrogen, and

L~ = Log2vl/wp ,

where wp is the plasma frequency. As long as wp ~ I, the free electron contribution
is dominant in the stopping process.

Beyond the more efficient energy exchange due to free electrons, the enhanced
projectile effective charge amplifies this effect. Numerical simulation of the charge
state evolution during interaction with free electrons of a plasma predicts that the
balance between ionisation processes and bound-bound, radiative and dielectronic
recombinations leads to an intense stripping of the incident ion due to the relatively
low cross sections of the recombination processes. For the 1017 e- /cm3 plasma in
these experiments, we thus expect to observe a rapid increase of the effective charge
at the entrance of the plasma target; then the charge remains unchanged during the
stopping process, except at the end of the trajectory when the velocity of the ion
decreases rapidly.

P.A.-N
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FIGURE 2 Calculated stopping power dE/dx for a Br ion in H plasma (3 eV line) of a cold H2 gas target
(1 eV line).

The addition of these two effects (efficiency of free electron stopping and enhanced
ionization of the projectile), results in a range-shortening of heavy ions in the plasma
compared to the same density of cold-gas bound electrons. Figure 2 presents the
calculated stopping power dE/dX for a bromine ion penetrating a cold hydrogen gas
target (1 eV line) or the corresponding plasma target (density 2 x 1017 e- /cm 3

; 3 eV
line).

In the case of a plasma target, the Bragg curve exhibits a pronounced maximum
at the end of the trajectory, allowing an intense and localized energy deposition. Such
a behavior is particularly favorable in the perspective of energy deposition in an ICF
pellet, where we expect to deposit the projectile energy in a narrow range in order
to avoid preheating of the target core.
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3 BEAM-PLASMA INTERACTION EXPERIMENTS

365

3.1 Experimental Set-up

The basic feature of the experimental set-up is coupling of a hydrogen plasma column
with the beam line of a heavy ion accelerator. Two similar devices have been used
simultaneously at Orsay in France and at Darmstadt in Germany, in order to
investigate beam-plasma interactions over a wide range of incident ions (from carbon
up to uranium) and velocities.

A specific effort has been made on the design of the following elements:

• Plasma diagnostics.

• Coupling ports between plasma target and the beam line.

• Time of flight measurements and acquisition process.

3.1.1 Plasma Target A steady flow of hydrogen gas (5-10 mbar) is established
inside a quartz cylinder (5 cm diameter, 40 cm length). The complete ionization of
hydrogen gas is achieved by ohmic heating using a powerful electric discharge yielding
a total energy of 5 kJ when operated at 15 kV.

The maximum ionization of the hydrogen plasma occurred 10 to 20 J.1S after
ignition, depending on the intensity of the electrical discharge. The magnetic field
produced by the current flowing through the plasma tends to constrict the plasma
column (Z-pinch effect). This effect is partially inhibited in our case by the thermal
pressure of the plasma. This magnetic confinement prevents direct contact with the
walls of the plasma tube and improves the stability and purity of the plasma during
about 60 J.1S. In return, this magnetic field structure induces deflection forces on the
ion beam. As a result we observe a succession of focusing and defocusing configura
tions in the plasma tube which alter or on the contrary improve the transmission of
the beam through the plasma column. These plasma lens effects have been discussed
in previous papers2 and we are paying great attention to the focusing properties of
the linear Z pinch in prospect of future applications; the properties of the Z-pinch
column are already investigated for achieving the final focusing of intense bunches
of the SIS-ESR beams. 6

3.1.2 Coupling Ports The typical plasma lifetime is approximately 100 J.1S. There
fore the plasma tube needs only to be open on the beam line during this short time.
Special coupling ports located at both sides of the plasma tube were therefore
developed,9 namely two fast valves which can be retracted within 200 J.1S (total
aperture). This limits the hydrogen leakage during the measurement. During the
ignition of the plasma column there always remains a few centimeters of molecular
hydrogen at both ends of the plasma tube. This "cold" hydrogen is of great
importance for the exact estimation of the projectile charge state at the entrance of
the plasma. Thus, a crucial improvement related to this shutter device is the reduction
of cold gas layers at both extremities of the plasma target 7. This system allows one
to use more expensive gases such as deuterium, which have properties that stabilize
the discharge and improve the reproducibility from shot to shot.
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FIGURE 3 Time evolution of free electron density and plasma pressure.

3.1.3 Plasma Diagnostic Plasma diagnostics were performed using three optical
methods8

. The free-electron density and temperature were determined from:

• Emission spectroscopy using Stark-broadening of the hydrogenic Hp line.

• Simultaneous absorption measurement at two different laser wavelengths (Ar
laser).

• Laser interferometry. The optical length depends on the refraction index of the
plasma which is fully determined by the electron density. (He-Ne laser).

Figure 3 reports the measured evolutions of free electron density (solid line) and
plasma temperature (dashed line) as a function of time. A good agreement is obtained
for the density determination using the three methods. The accuracy on the density
measurement is on the order of 15%.

The oscillatory behavior of these curves is due to the oscillating current in the
discharge circuit. At the end of the plasma shot a progressive contamination by silicon
ions pulled out from the quartz walls lowers the temperature and consequently
induces a rapid recombination of the free electrons. This particular problem has been
solved recently by replacing the quartz tube by an alumina one. In this latter case
the temperature remains constant during the complete measurement.

3.1.4 Data Acquisition The energy losses of the heavy ions were measured with a
time of flight (TOF) technique using each beam burst as an energy probe. The
accelerator pulsation was fixed at 2.5 MHz, which corresponds to one beam burst
every 800 ns. During one plasma shot we were thus able to perform about 100
energy-loss samplings.
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FIGURE 4 Energy loss measurements for a Br beam traversing a deuterium plasma target.

The plasma light emission was used to define the time zero of the acquisition
process. The first beam bunch arriving after this light signal triggered the acquisition.
Five capacitive phase probes placed at regular intervals along the beam line provided
the timing signals. These signals were sent to a special time-to-digital-converter (TDC
Multistops), which registered 255 stops following one start pulse. The time resolution
of this device was 1 ns (0.05% of the full TOF) and its contribution to the global
precision of the velocity measurement was thus negligible.

Several personal computers were devoted to the visualisation and memory storage
of the data. Plasma parameters were registered simultaneously during each plasma
shot.

3.2. Energy Loss Measurements

Energy loss measurements obtained with a bromine beam traversing a deuterium
plasma target are presented in Figure 4.

The measured energy losses reproduce the oscillations of the plasma density and
the error bars reflect the fluctuations between different plasma shots, demonstrating
the good reproducibility of the plasma parameters.

The corresponding density curve indicates that in this particular measurement we
have explored plasmas with densities evolving from 2.1017 e - fcm 3 up to
7.1017 e - fcm 3

• By coupling energy losses measurements to their corresponding
densities we are able to construct the curves, which are reported in Figure 5 for
different incident ions.

All these have been obtained for incident ions covering a velocity range from 1 to
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2 cm/ns. This velocity region corresponds to the largest electronic stopping power
for the considered ions.

Solid lines correspond to energy loss calculated values as a function of plasma
density using the SSM theory. There is a fair agreement between experimental points
and calculated values. This indicates that both estimations of projectile eff~ctive

charge and stopping number evaluation are correctly taken into account.

3.3. Experimental Effective Charge State Determination.

If we consider two ions with the same velocity penetrating in the same plasma target,
the only factor which differentiate their stopping powers is the square of their effective
charge.

Measuring the energy loss allows charge-state determination, provided that we
know a reference ion charge evolution. The carbon is a good candidate to be the
reference ion. Due to its low atomic number, this ion reaches rapidly an equilibrium
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FIGURE 6 Energy loss as a function of effective charge.

charge very close to that of the fully ionised ion (Zeff = 5.95). A comparison with the
effective charge state evolution of the sulfur ion is presented in Figure 6. For each
value of plasma density (or distance in hydrogen plasma) we can calculate the ratio
of the square of the effective charge for the two ions. The corresponding curve is
reported as a solid line on Figure 6.

The experimental determination of the ratio of the energy losses for the same ions
traversing the same plasma densities are displayed as black points on the figure. The
agreement is quite good and an extension of this mean charge determination is shown
on the same diagram for the ion couple Br/S.

This method only gives access to mean values of the effective charge states and
the natural development of this study will be a more refined analysis including a
discrete charge state determination based on a magnetic analysis of the beam burst
after interaction.

4 CONCLUSION AND FUTURE

This first step in the experimental approach of beam-plasma interactions has given
a strong support for the validity of the SSM theory applied to hot matter. A wide
range of heavy-ion species interacting with fully ionized hydrogen and deuterium
plasmas was explored, and it was clearly demonstrated that the stopping power is
enhanced, due to free electrons, in agreement with theoretical expectations.

The future of this experimental program is now to extend investigations in several
directions:
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• A progressive increase of the plasma densities and temperatures by varying
plasma sources (Energetic Z pinch, gas puff generator, impact plasma from energetic
and intense beam).

• A charge analysis of projectile ions after plasma interaction and the correlation
with stopping power measurements.

• A more refined analysis of stopping process by varying the ionization ratio of
the plasma target (by changing the gas support or the temperature)
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