4,465 research outputs found
On the theory of electric dc-conductivity : linear and non-linear microscopic evolution and macroscopic behaviour
We consider the Schrodinger time evolution of charged particles subject to a
static substrate potential and to a homogeneous, macroscopic electric field (a
magnetic field may also be present). We investigate the microscopic velocities
and the resulting macroscopic current. We show that the microscopic velocities
are in general non-linear with respect to the electric field. One kind of
non-linearity arises from the highly non-linear adiabatic evolution and (or)
from an admixture of parts of it in so-called intermediate states, and the
other kind from non-quadratic transition rates between adiabatic states. The
resulting macroscopic dc-current may or may not be linear in the field. Three
cases can be distinguished : (a) The microscopic non-linearities can be
neglected. This is assumed to be the case in linear response theory (Kubo
formalism, ...). We give arguments which make it plausible that often such an
assumption is indeed justified, in particular for the current parallel to the
field. (b) The microscopic non-linearitites lead to macroscopic
non-linearities. An example is the onset of dissipation by increasing the
electric field in the breakdown of the quantum Hall effect. (c) The macroscopic
current is linear although the microscopic non-linearities constitute an
essential part of it and cannot be neglected. We show that the Hall current of
a quantized Hall plateau belongs to this case. This illustrates that
macroscopic linearity does not necessarily result from microscopic linearity.
In the second and third cases linear response theory is inadequate. We
elucidate also some other problems related to linear response theory.Comment: 24 pages, 6 figures, some typing errors have been corrected. Remark :
in eq. (1) of the printed article an obvious typing error remain
The Deepest Supernova Search is Realized in the Hubble Ultra Deep Field Survey
The Hubble Ultra Deep Field Survey has not only provided the deepest optical
and near infrared views of universe, but has enabled a search for the most
distant supernovae to z~2.2. We have found four supernovae by searching spans
of integrations of the Ultra Deep Field and the Ultra Deep Field Parallels
taken with the Hubble Space Telescope paired with the Advanced Camera for
Surveys and the Near Infrared Multi Object Spectrometer. Interestingly, none of
these supernovae were at z>1.4, despite the substantially increased sensitivity
per unit area to such objects over the Great Observatories Origins Deep Survey.
We present the optical photometric data for the four supernovae. We also show
that the low frequency of Type Ia supernovae observed at z>1.4 is statistically
consistent with current estimates of the global star formation history combined
with the non-trivial assembly time of SN Ia progenitors.Comment: 24 pages (6 figures), submitted to the Astronomical Journa
Why we need to see the dark matter to understand the dark energy
The cosmological concordance model contains two separate constituents which
interact only gravitationally with themselves and everything else, the dark
matter and the dark energy. In the standard dark energy models, the dark matter
makes up some 20% of the total energy budget today, while the dark energy is
responsible for about 75%. Here we show that these numbers are only robust for
specific dark energy models and that in general we cannot measure the abundance
of the dark constituents separately without making strong assumptions.Comment: 4 pages, to be published in the Journal of Physics: Conference Series
as a contribution to the 2007 Europhysics Conference on High Energy Physic
Can the Universe escape eternal acceleration?
Recent astronomical observations of distant supernovae light-curves suggest
that the expansion of the universe has recently begun to accelerate.
Acceleration is created by an anti-gravitational repulsive stress, like that
produced by a positive cosmological constant, or universal vacuum energy. It
creates a rather bleak eschatological picture. An ever-expanding universe's
future appears to be increasingly dominated by its constant vacuum energy. A
universe doomed to accelerate forever will produce a state of growing
uniformity and cosmic loneliness. Structures participating in the cosmological
expansion will ultimately leave each others' horizons and
information-processing must eventually die out. Here, we examine whether this
picture is the only interpretation of the observations. We find that in many
well-motivated scenarios the observed spell of vacuum domination is only a
transient phenomenon. Soon after acceleration starts, the vacuum energy's
anti-gravitational properties are reversed, and a matter-dominated decelerating
cosmic expansion resumes. Thus, contrary to general expectations, once an
accelerating universe does not mean always an accelerating universe.Comment: 6 pages, 2 figure
The Rate of Type Ia Supernovae at High Redshift
We derive the rates of Type Ia supernovae (SNIa) over a wide range of
redshifts using a complete sample from the IfA Deep Survey. This sample of more
than 100 SNIa is the largest set ever collected from a single survey, and
therefore uniquely powerful for a detailed supernova rate (SNR) calculation.
Measurements of the SNR as a function of cosmological time offer a glimpse into
the relationship between the star formation rate (SFR) and Type Ia SNR, and may
provide evidence for the progenitor pathway. We observe a progressively
increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR
measurements are consistent with a short time delay (t~1 Gyr) with respect to
the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We
derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the
conversion factor between star formation and SNIa rates, as determined for a
delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete
measurements of the Type Ia SNR at z>1 are necessary to conclusively determine
the SFR--SNR relationship and constrain SNIa evolutionary pathways.Comment: 37 pages, 9 figures, accepted for publication in Astrophysical
Journal. Figures 7-9 correcte
Natural extension of the Generalised Uncertainty Principle
We discuss a gedanken experiment for the simultaneous measurement of the
position and momentum of a particle in de Sitter spacetime. We propose an
extension of the so-called generalized uncertainty principle (GUP) which
implies the existence of a minimum observable momentum. The new GUP is directly
connected to the nonzero cosmological constant, which becomes a necessary
ingredient for a more complete picture of the quantum spacetime.Comment: 4 pages, 1 figure, v2 with added references, revised and extended as
published in CQ
Future state of the Universe
Following the observational evidence for cosmic acceleration which may
exclude a possibility for the universe to recollapse to a second singularity,
we review alternative scenarios of its future evolution. Although the de Sitter
asymptotic state is still an option, some other asymptotic states which allow
new types of singularities such as Big-Rip (due to a phantom matter) and sudden
future singularities are also admissible and are reviewed in detail. The
reality of these singularities which comes from the relation to observational
characteristics of the universe expansion are also revealed and widely
discussed.Comment: 12 pages, 1 figure, a contribution to Pomeranian Workshop in
Fundamental Cosmology (COSMOFUN'05), Pobierowo, Poland, 1-6 September 200
Quintessential inflation from 5D warped product spaces on a dynamical foliation
Assuming the existence of a 5D purely kinetic scalar field on the class of
warped product spaces we investigate the possibility of mimic both an
inflationary and a quintessential scenarios on 4D hypersurfaces, by
implementing a dynamical foliation on the fifth coordinate instead of a
constant one. We obtain that an induced chaotic inflationary scenario with a
geometrically induced scalar potential and an induced quasi-vacuum equation of
state on 4D dynamical hypersurfaces is possible. While on a constant foliation
the universe can be considered as matter dominated today, in a family of 4D
dynamical hypersurfaces the universe can be passing for a period of accelerated
expansion with a deceleration parameter nearly -1. This effect of the dynamical
foliation results negligible at the inflationary epoch allowing for a chaotic
scenario and becomes considerable at the present epoch allowing a
quintessential scenario.Comment: 7 pages, 1 figure Accepted for publication in Modern Physics Letters
Constraints on CDM cosmology from galaxy power spectrum, CMB and SNIa evolution
We examine the constraints that can be obtained on standard cold dark matter
models from the most currently used data set: CMB anisotropies, type Ia
supernovae and the SDSS luminous red galaxies. We also examine how these
constraints are widened when the equation of state parameter and the
curvature parameter are left as free parameters. For the
CDM model, our 'vanilla' model, cosmological parameters are tightly
constrained and consistent with current estimates from various methods. When
the dark energy parameter is free we find that the constraints remain
mostly unchanged, i.e. changes are smaller than the 1 sigma uncertainties.
Similarly, relaxing the assumption of a flat universe leads to nearly identical
constraints on the dark energy density parameter of the universe
, baryon density of the universe , the optical
depth , the index of the power spectrum of primordial fluctuations ,
with most one sigma uncertainties better than 5%. More significant changes
appear on other parameters: while preferred values are almost unchanged,
uncertainties for the physical dark matter density , Hubble
constant and are typically twice as large. We found that
different methodological approaches on large scale structure estimates lead to
appreciable differences in preferred values and uncertainty widths. We also
found that possible evolution in SNIa intrinsic luminosity does not alter these
constraints by much, except for , for which the uncertainty is twice as
large. At the same time, this possible evolution is severely constrained. We
conclude that systematic uncertainties for some estimated quantities are
similar or larger than statistical ones.Comment: Revised version, 9 pages, 8 figures, accepted for publication in A&
The conformal status of Brans-Dicke cosmology
Following recent fit of supernovae data to Brans-Dicke theory which favours
the model with \cite{fabris} we discuss the status of this
special case of Brans-Dicke cosmology in both isotropic and anisotropic
framework. It emerges that the limit is consistent only with
the vacuum field equations and it makes such a Brans-Dicke theory conformally
invariant. Then it is an example of the conformal relativity theory which
allows the invariance with respect to conformal transformations of the metric.
Besides, Brans-Dicke theory with gives a border between a
standard scalar field model and a ghost/phantom model.
In this paper we show that in Brans-Dicke theory, i.e., in
the conformal relativity there are no isotropic Friedmann solutions of non-zero
spatial curvature except for case. Further we show that this
case, after the conformal transformation into the Einstein frame, is just the
Milne universe and, as such, it is equivalent to Minkowski spacetime. It
generally means that only flat models are fully consistent with the field
equations. On the other hand, it is shown explicitly that the anisotropic
non-zero spatial curvature models of Kantowski-Sachs type are admissible in
Brans-Dicke theory. It then seems that an additional scale
factor which appears in anisotropic models gives an extra deegre of freedom and
makes it less restrictive than in an isotropic Friedmann case.Comment: REVTEX4, 19 pages, 8 figures, references adde
- …
