We consider the Schrodinger time evolution of charged particles subject to a
static substrate potential and to a homogeneous, macroscopic electric field (a
magnetic field may also be present). We investigate the microscopic velocities
and the resulting macroscopic current. We show that the microscopic velocities
are in general non-linear with respect to the electric field. One kind of
non-linearity arises from the highly non-linear adiabatic evolution and (or)
from an admixture of parts of it in so-called intermediate states, and the
other kind from non-quadratic transition rates between adiabatic states. The
resulting macroscopic dc-current may or may not be linear in the field. Three
cases can be distinguished : (a) The microscopic non-linearities can be
neglected. This is assumed to be the case in linear response theory (Kubo
formalism, ...). We give arguments which make it plausible that often such an
assumption is indeed justified, in particular for the current parallel to the
field. (b) The microscopic non-linearitites lead to macroscopic
non-linearities. An example is the onset of dissipation by increasing the
electric field in the breakdown of the quantum Hall effect. (c) The macroscopic
current is linear although the microscopic non-linearities constitute an
essential part of it and cannot be neglected. We show that the Hall current of
a quantized Hall plateau belongs to this case. This illustrates that
macroscopic linearity does not necessarily result from microscopic linearity.
In the second and third cases linear response theory is inadequate. We
elucidate also some other problems related to linear response theory.Comment: 24 pages, 6 figures, some typing errors have been corrected. Remark :
in eq. (1) of the printed article an obvious typing error remain