995 research outputs found
A geometric method for model reduction of biochemical networks with polynomial rate functions
Role of interfacial tension for the structure of PEP-PEO polymeric micelles. A combined SANS and pendant drop tensiometry investigation
We investigated the influence of interfacial tension, gamma, on the micellization properties of a highly asymmetric poly(ethylene-co-propylene)-poly(ethylene oxide) (PEP-PEO) block copolymer in mixed solvents consisting of water and dimethyl form ami de (DMF). Both are good solvents for PEO and nonsolvents for PEP but exhibit, a large difference in gamma with respect to the insoluble core block. Micellar characteristics were obtained by small-angle neutron scattering (SANS) and subsequent fitting of a core-shell form factor to the scattering patterns. The curves are perfectly described by a hyperbolic density profile for the shell, n(r) similar to r(-4/3), indicating a starlike structure of the micelles. The aggregation numbers of the micelles decrease with increasing DMF-water ratio from P = 120 in pure water to nonaggregated chains in pure DMF. Corresponding interfacial tensions were determined by pendant drop tensiometry using a PEP homopolymer of equal molar mass. A correlation of P with gamma reveals a power law dependence, P similar to gamma(6/5) in accordance with the scaling prediction of Halperin for starlike micelles. Additionally, it was found that the addition of DMF leads to a considerable decrease in the micelle radii, which cannot be explained by the decrease in P alone. Measurements of the second virial coefficients, A(2), of a PEO homopolymer by SANS reveal clearly reduced values compared to A(2) in pure water but still good solvent conditions for PEO in all water/DMF mixtures. However, a significant reduction in the radius of gyration was not found. Therefore, it was concluded that the reduced solvent quality has a more pronounced effect for the PEO chain dimensions in the confined geometry of a micellar corona
Coincidence isometries of a shifted square lattice
We consider the coincidence problem for the square lattice that is translated
by an arbitrary vector. General results are obtained about the set of
coincidence isometries and the coincidence site lattices of a shifted square
lattice by identifying the square lattice with the ring of Gaussian integers.
To illustrate them, we calculate the set of coincidence isometries, as well as
generating functions for the number of coincidence site lattices and
coincidence isometries, for specific examples.Comment: 10 pages, 1 figure; paper presented at Aperiodic 2009 (Liverpool
Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers
The control mechanisms involved in the modification of wax crystal dimensions in crude oils and refined fuels are of joint scientific and practical interest. An understanding of these mechanisms allows strategies to be developed that lead to decreases in crude oil pour points or (for refined fuels) cold filter plugging points. The attainment of these goals involves the control and modification of wax crystals that spontaneously form in mixed hydrocarbon systems upon decreasing temperature. This work reports on the influence of random crystalline-amorphous block copolymers (ethylene-butene) upon the rheology of model oils. In a parallel fashion small-angle neutron scattering was exploited to gain microscopic insight as to how added poly(ethylene-butene) copolymers modify the wax crystal structures. The copolymers with different contents of polyethylene are highly selective with respect to wax crystal modification. Thus, the copolymer with the highest crystalline tendency is more efficient for the larger wax molecules while the less crystalline one is more efficient for the lower waxes
Time scales in shear banding of wormlike micelles
Transient stress and birefringence measurements are performed on wormlike micellar solutions that "shear band", i.e. undergo flow-induced coexistence of states of different viscosities along a constant stress "plateau". Three well-defined relaxation times are found after a strain rate step between two banded flow states on the stress plateau. Using the Johnson-Segalman model, we relate these time scales to three qualitatively different stages in the evolution of the bands and the interface between them: band destabilization, reconstruction of the interface, and travel of the fully formed interface. The longest timescale is then used to estimate the magnitude of the (unknown) "gradient" terms that must be added to constitutive relations to explain the history independence of the steady flow and the plateau stress selection
Dense packing on uniform lattices
We study the Hard Core Model on the graphs
obtained from Archimedean tilings i.e. configurations in with the nearest neighbor 1's forbidden. Our
particular aim in choosing these graphs is to obtain insight to the geometry of
the densest packings in a uniform discrete set-up. We establish density bounds,
optimal configurations reaching them in all cases, and introduce a
probabilistic cellular automaton that generates the legal configurations. Its
rule involves a parameter which can be naturally characterized as packing
pressure. It can have a critical value but from packing point of view just as
interesting are the noncritical cases. These phenomena are related to the
exponential size of the set of densest packings and more specifically whether
these packings are maximally symmetric, simple laminated or essentially random
packings.Comment: 18 page
E-cadherin can limit the transforming properties of activating β-catenin mutations
Wnt pathway deregulation is a common characteristic of many cancers. But only Colorectal Cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of pancreas) have activating mutations in β-catenin (CTNNB1). We have compared the dynamics and the potency of β-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of β-catenin took much longer to achieve a Wnt deregulation and acquire a crypt-progenitor-cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of β-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of β-catenin mutation to differentially transform the SI versus the colon correlated with significantly higher expression of the β-catenin binding partner E-cadherin. This increased expression is associated with a higher number of E-cadherin:β-catenin complexes at the membrane. Reduction of E-cadherin synergised with an activating mutation of β-catenin so there was now a rapid CPC phenotype within the colon and SI. Thus there is a threshold of β-catenin that is required to drive transformation and E-cadherin can act as a buffer to prevent β-catenin accumulation
Rheological Chaos in a Scalar Shear-Thickening Model
We study a simple scalar constitutive equation for a shear-thickening
material at zero Reynolds number, in which the shear stress \sigma is driven at
a constant shear rate \dot\gamma and relaxes by two parallel decay processes: a
nonlinear decay at a nonmonotonic rate R(\sigma_1) and a linear decay at rate
\lambda\sigma_2. Here \sigma_{1,2}(t) =
\tau_{1,2}^{-1}\int_0^t\sigma(t')\exp[-(t-t')/\tau_{1,2}] {\rm d}t' are two
retarded stresses. For suitable parameters, the steady state flow curve is
monotonic but unstable; this arises when \tau_2>\tau_1 and
0>R'(\sigma)>-\lambda so that monotonicity is restored only through the
strongly retarded term (which might model a slow evolution of material
structure under stress). Within the unstable region we find a period-doubling
sequence leading to chaos. Instability, but not chaos, persists even for the
case \tau_1\to 0. A similar generic mechanism might also arise in shear
thinning systems and in some banded flows.Comment: Reference added; typos corrected. To appear in PRE Rap. Com
- …
