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Abstract

Wnt pathway deregulation is a common characteristic of many
cancers. Only colorectal cancer predominantly harbours mutations
in APC, whereas other cancer types (hepatocellular carcinoma,
solid pseudopapillary tumours of the pancreas) have activating
mutations in b-catenin (CTNNB1). We have compared the dynamics
and the potency of b-catenin mutations in vivo. Within the murine
small intestine (SI), an activating mutation of b-catenin took much
longer to achieve Wnt deregulation and acquire a crypt-progenitor
cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single
activating mutation of b-catenin was unable to drive Wnt deregula-
tion or induce the CPC phenotype. This ability of b-catenin mutation
to differentially transform the SI versus the colon correlated with
higher expression of E-cadherin and a higher number of E-cadherin:
b-catenin complexes at the membrane. Reduction in E-cadherin
synergised with an activating mutation of b-catenin resulting in a
rapid CPC phenotype within the SI and colon. Thus, there is a
threshold of b-catenin that is required to drive transformation, and
E-cadherin can act as a buffer to sequester mutated b-catenin.
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Introduction

Mutation of the APC (adenomatous polyposis coli) gene is the

most common event in colorectal cancer (CRC). A recent study

where a large number of CRCs (200) were sequenced showed

mutation in over 70% of CRC (TCGA, 2012). It is proposed that

the reason for APC mutation in CRC is due to its role as a negative

regulator of the Wnt signalling pathway. APC is part of a large

multiprotein destruction complex that targets b-catenin (CTNNB1,

CATNB1) for degradation. In the absence of a Wnt ligand, APC in

complex with AXIN, casein kinase 1 (CK1) and GSK3beta is

required for the phosphorylation of b-catenin by GSK3, which

targets b-catenin for degradation. Following a Wnt signal or APC

mutation, this complex does not form and b-catenin is no longer

targeted for degradation and accumulates in the nucleus. Within

the nucleus, b-catenin interacts with T-cell factor-1/lymphoid-

enhancing factor-1 (TCF/LEF1) transcription factors to drive

transcription of TCF/LEF1 target genes (Kinzler & Vogelstein, 1996;

Clevers, 2006).

CRC is unusual compared to other cancers in that loss of function

mutations in APC are much more frequent than activating mutations

in b-catenin (i.e. in exon 3), ~75% compared to ~5%, respectively

(TCGA, 2012). In other cancers, such as hepatocellular cancer, acti-

vating mutations in the b-catenin gene are much more frequent,

where the phosphorylation sites that target b-catenin for degrada-

tion are mutated (Cui et al, 2003; Edamoto et al, 2003; Ahn et al,

2014). As APC is a large protein, it has been hypothesised that func-

tions other than just Wnt deregulation may be crucial for tumour
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initiation. These include microtubule binding, mitosis and actin

cytoskeleton regulation (Nathke, 2004).

b-catenin is also an essential part of the adherens junction at the

membrane where it binds to E-cadherin. Loss of b-catenin from the

intestine therefore leads not only to a loss of Wnt signalling (and

stem cells) but also to reduced adhesion alongside cell loss from

the villus (Ireland et al, 2004). The inter-relationship between

b-catenin:E-cadherin and the b-catenin:TCF4 complexes has been a

subject of much study and debate. Loss of E-Cadherin in cancer cells

is often associated with markers of “EMT” and an upregulation of

b-catenin TCF4 signalling, which is thought to happen at late stages

of tumour progression.

However, despite this, there is a lack of definitive in vivo

evidence that E-cadherin levels are able to limit the transforming

capacity of b-catenin accumulation in tumour initiation. Presum-

ably, this is due to the fact that increases in free b-catenin would be

degraded by the destruction complex.

Given the centrality of the APC tumour suppressor to CRC, we

decided to use a genetic approach in vivo and in vitro to address the

differences in Wnt activation by either mutation of b-catenin or

mutation of the destruction complex (APC or GSK3). We have previ-

ously shown that genetic deletion of both copies of the Apc tumour

suppressor (Apcfl/fl) rapidly generates a crypt-progenitor cell-like

phenotype (CPC) within the intestinal epithelium, with cells failing

to differentiate, retaining proliferative capacity and failing to migrate

up the crypt-villus axis (Sansom et al, 2004). This is associated with

a relocalisation of b-catenin to the nucleus and the expression of

functionally important Wnt target genes such as cMyc (Sansom

et al, 2007).

We therefore investigated a number of alternative approaches to

deregulation of Wnt signalling within the intestinal epithelium and

assessed functional and Wnt signalling outputs. Taken together, our

data show that mutation of the destruction complex, either by loss

of APC or by loss of GSK3, leads to a rapid Wnt deregulation with

accumulation of b-catenin in the small intestine and the colon.

Surprisingly, a single activating mutation of b-catenin takes much

more time to develop a phenotype in the small intestine and is

unable to transform the colon. We show that this is due to high

E-cadherin levels in the colon, which act as a sink for the mutated

b-catenin. Reduction in E-cadherin or mutation of both copies of

b-catenin swamps E-cadherin and then leads to rapid transformation

of both the small intestine and colon.

Results

Apc loss, Gsk3 loss and homozygous mutation of b-catenin are
each sufficient to induce a crypt-progenitor phenotype

Our previous data showed that Apc loss was sufficient to induce

b-catenin activation in the mouse intestine. The resulting Wnt

signalling deregulation is characterised by a crypt-progenitor cell

(CPC) phenotype with high nuclear b-catenin, increased prolifera-

tion and upregulation of Wnt target genes in both the small

intestine and colon (Sansom et al, 2004; Hinoi et al, 2007;

Fig 1A).

To confirm our finding that inactivation of the destruction

complex was sufficient to initiate transformation of the small

intestine and colon, we deleted GSK3 and assessed if it would drive

a similar phenotype to that of Apc loss. There are two isoforms of

GSK3, GSK3alpha (GSK3A) and GSK3beta (GSK3B), and data from

ES cells suggested that in the absence of one isoform, the other can

compensate (Doble et al, 2007).

We generated AhCreER Gsk3alphafl/fl Gsk3betafl/fl mice, which

upon induction with b-naphthoflavone and tamoxifen recombine

in the crypts of the small intestine and to a lesser extent in the

colon (Kemp et al, 2004). Complete genetic ablation of Gsk3

produced a phenotype that recapitulated Apc deficiency within the

intestinal epithelium (Figs 1A and EV1A). Six days after Gsk3

deletion, the intestines adopted the CPC phenotype with nuclear

localisation of b-catenin and an induction of Wnt target genes. This

similarity to the Apc loss phenotype suggested that the main func-

tion of GSK3 within the intestine is to control Wnt signalling. Apc

heterozygous mice develop intestinal tumours on the loss of the

remaining copy of Apc. Given there are 2 different GSK3 isoforms,

4 mutations would be required to produce a situation where Wnt

would be deregulated. We asked, if only 1 allele of GSK3 needed

to be lost, whether these mice would undergo intestinal tumouri-

genesis. To do this, we generated mice lacking 3 alleles of GSK3

(AhCre GSK3alphafl/fl GSK3betafl/+ and AhCre Gsk3alphafl/+ Gsk3-

betafl/fl mice) and found following Cre deletion a significant frac-

tion of these mice spontaneously developed intestinal tumours, in

contrast to the single isoform mice (AhCre Gsk3betafl/fl; Fig EV1B

and C).

Similarly to loss of the destruction complex, activating mutation

of both copies of the b-catenin allele (AhCreER Catnblox(ex3)/lox(ex3))

showed the CPC phenotype with nuclear localisation of b-catenin
and increased proliferation along the crypt-villus axis (Figs 1A and

EV2A). Exon 3, which encodes the GSK3 phosphorylation sites that

target b-catenin for degradation, is flanked by loxP sites, so the

expression of Cre recombinase within the intestinal epithelium

results in deletion of exon 3 and hence, b-catenin can no longer be

targeted for degradation (Harada et al, 1999).

We investigated the impact of a single b-catenin mutation, which

is analogous to the situation found in human patients. In contrast

to Apc deletion (AhCreER Apcfl/fl), activation of a single copy of

b-catenin did not yield a robust CPC phenotype at day 5 or day 10.

Immunohistochemical staining of b-catenin showed very little

nuclear localisation and no increase in proliferation (Figs 1B and

EV2A).

At day 15, nuclear b-catenin became evident inAhCreER Catnblox(ex3)/+

mice and a number of crypts became enlarged. At time points past

day 20, a single copy of Catnblox(ex3)/+ was able to induce a robust

CPC phenotype in the small intestine (Fig 1B).

To probe the kinetics of b-catenin activation, we used intestinal

“organoid” crypt culture (Sato et al, 2009). Previous studies have

shown that once Apc is lost, intestinal cultures no longer require the

addition of R-spondin or Wnt ligand produced by the Paneth cells.

They also no longer bud into “crypt-like” structures, but form

sphere structures instead (Fig 1C). The cultures therefore provide

an excellent system to compare b-catenin exon 3 deletion to the

loss of Apc. We therefore examined the capacity of AhCreER

Catnblox(ex3)/+ and AhCreER Catnblox(ex3)/lox(ex3) crypts (from the

small intestine) which were induced in vivo to form organoids/

spheres in culture and their R-spondin1 dependence. In contrast to

organoids where Apc was deleted, AhCreER Catnblox(ex3)/+ crypts did
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not show R-spondin1 independence and died in culture when plated

5 days following Cre recombination in vivo (Fig 1D). In contrast,

AhCreER Catnblox(ex3)/lox(ex3) formed spheres in an equivalent manner

to homozygous Apc deletion, independent of R-spondin1. Crypts

sampled at later time points (day 10) from AhCreER Catnblox(ex3)/+

mice were able to survive in culture without R-spondin. At this time

point, we observed a more organoid-like structure phenotype

(~85%) than the expected typical round spheres (~15%) (Fig 1E).

This early intermediate phenotype of crypts suggests that absolute

levels of Wnt signalling in crypts with one copy of b-catenin were

not as high as either mutation of both alleles of b-catenin or Apc

loss. In contrast, crypts from AhCreER Catnblox(ex3)/lox(ex3) almost

completely formed spheres, and only few organoid-like structures

were observed.

Single copy activation of b-catenin does not transform the colon
either immediately or at longer time points

We next examined the colons from the AhCreER Catnblox(ex3)/+ mice.

In contrast to AhCreER Apcfl/fl mice, which rapidly develop a CPC

A C

D

E

B

Figure 1. Apc loss, GSK3 loss and homozygous mutation of b-catenin are sufficient to induce a rapid crypt-progenitor phenotype, but not a single b-catenin
mutation.

A Wild-type mice have small defined crypts in the small intestine with little nuclear b-catenin at the bottom of the crypt. The small intestine of AhCreER APCfl/fl, AhCreER

Catnblox(ex3)/lox(ex3) (day 5) or AhCreER Gsk3alphafl/fl betafl/fl (day 6) show the crypt-progenitor cell (CPC) phenotype with increased crypt size (red bar) and nuclear
b-catenin (arrows) along the crypt-villus axis. Scale bar, 100 lm.

B A heterozygous activation of b-catenin (AhCreER Catnblox(ex3)/+) shows no increase in crypt size or nuclear b-catenin at days 5–10. At day 15 post-induction,
accumulation of nuclear b-catenin (arrows) becomes evident with a dramatic CPC phenotype at about day 25. Scale bar, 100 lm.

C Culture of small intestinal crypts of WT and VilCreER Apcfl/fl (or AhCreER Apcfl/fl) mice with/without R-spo1 shows the dependence of the Wnt agonist in WT organoids
but not in Apc-deficient spheres. Representative photos were taken at day 5 in culture. Black scale bar, 50 lm.

D At day 5 post-induction, only crypts from AhCreER Catnblox(ex3)/lox(ex3) but not AhCreER Catnblox(ex3)/+ survive in culture without the addition of R-spo1. At day 10 post-
induction, we observed a mixed phenotype of more organoid-like structures in AhCreER Catnblox(ex3)/+ compared to spheres from Catnblox(ex3)/lox(ex3) crypts in the first
week of culture. Black scale bar, 50 lm.

E Quantification of organoids/spheres at day 10 post-induction (N = 2 or 3 mice per genotype, mean of 6 technical replicates per mouse).
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phenotype with nuclear b-catenin accumulation and Wnt target

gene activation, this did not occur in the AhCreER Catnblox(ex3)/+

mice. Colons from AhCreER Catnblox(ex3)/+ mice even 25 days post-

induction did not show nuclear b-catenin or Wnt target gene

activation despite a clear CPC phenotype in the small intestine

(Fig EV2B).

To examine this phenomenon more carefully, we used the

VilCreER transgene to drive recombination as this delivers much

higher recombination in the colorectal epithelium than the

AhCreER transgene. Four days post-recombination, a CPC pheno-

type was observed in the colons (and the small intestine) of

VilCreER Catnblox(ex3)/lox(ex3) and VilCreER Apcfl/fl mice with

increased levels of nuclear b-catenin and SOX9. However, no

phenotype or accumulation of b-catenin or Sox9 was observed

in the colons (or small intestines) of VilCreER Catnblox(ex3)/+ mice

at this time point (Fig EV3). The dramatic CPC phenotype in the

SI and colon meant both the VilCreER Catnblox(ex3)/lox(ex3) and

VilCreER Apcfl/fl needed to be harvested due to signs of ill health.

In contrast, VilCreER Catnblox(ex3)/+ developed signs of ill health

after about 25 days which was associated with a small intestinal

CPC phenotype. In the colon, there was not an obvious CPC

phenotype at this stage (Figs EV2C and EV3).

Given this failure to drive a CPC phenotype, we next wanted

to ask whether single copy activation of b-catenin within intesti-

nal stem cells could lead to intestinal tumourigenesis. To do

this, we interbred Catnblox(ex3)/+ to Lgr5CreER mice to allow

inducible Cre-mediated recombination within the LGR5-positive

intestinal stem cells. The Lgr5CreER delivers highly penetrant

recombination in the small intestinal Lgr5-positive stem cell

population and lower penetrant recombination in colon Lgr5-

positive stem cell population. We have previously shown that

targeting Apc loss to the Lgr5 compartment led to rapid small

intestinal adenoma formation (Barker et al, 2009; Myant et al,

2013). Lgr5CreER Catnblox(ex3)/+ and Lgr5CreER Catnblox(ex3)/lox(ex3)

mice were induced with a single intraperitoneal injection

(IP) injection of tamoxifen and rapidly developed small intesti-

nal tumours (Appendix Fig S1) with similar kinetics to those

following Apc deletion in the Lgr5 compartment. The equal

potency of Apc loss and mutation of a single

b-catenin allele at transforming Lgr5-positive cells was somewhat

surprising given the high frequency of APC mutations in

human CRC. Therefore, we next analysed colonic lesions within

Lgr5CreER Catnblox(ex3)/+, Lgr5CreER Catnblox(ex3)/lox(ex3) and

Lgr5CreER Apcfl/fl mice when they were harvested due to small

intestinal disease burden. We found that the majority of

Lgr5CreER Catnblox(ex3)/lox(ex3) mice (88%) and Lgr5CreER Apcfl/fl

mice (91%) had lesions in the colon, whereas none of the Lgr5CreER

Catnblox(ex3)/+ mice (0%) had any lesions (Fig 2A). Colonic lesions

were defined by an increase in nuclear b-catenin levels and corre-

sponding levels of the Wnt target gene Sox9 protein (Fig 2B). Given

that we observe a similar accumulation of b-catenin in the

small intestine after GSK3 deletion; we predicted that Lgr5CreER

Gsk3alphafl/fl Gsk3betafl/fl should develop colonic lesions. We found

that mice similarly succumbed to intestinal lesions in both the small

intestine and colon (Fig EV4).

Taken together, this showed that there are fundamental differ-

ences in the ability of a single copy of b-catenin to transform small

intestinal and colorectal epithelial cells in the mouse.

E-cadherin levels are higher in the colon compared to the small
intestine of wild-type mice

Although many studies have proposed that the pool of E-cadherin

may limit the amount of free b-catenin, there is very little experi-

mental evidence that this is the case. For example, E-cadherin

heterozygous mice are viable and fertile with no clear deregulation

of b-catenin activity (Larue et al, 1994; Riethmacher et al, 1995).

Given the clear phenotypical differences between the small and

the large intestine in our VilCreER Catnblox(ex3)/+ mice, we first

examined whether E-cadherin levels might be higher in the colon

than the small intestine. This would suggest that E-cadherin might

be playing a role in limiting the free b-catenin. Investigating expres-

sion by both qRT–PCR and immunoblotting showed markedly

higher levels of E-cadherin in the colon compared to the small intes-

tine in wild-type mice (Fig 3A–C).

To quantify not just the E-cadherin levels in both tissues, but

rather the complexes of b-catenin and E-cadherin, we used the well-

characterised proximity ligation assay (PLA). Using antibodies for

b-catenin and E-cadherin allowed us to quantify the number of

complexes in the small intestine and the colon of wild-type mice.

Consistent with the increase in E-cadherin expression, there was a

2- to 3-fold increase in the number of E-cadherin:b-catenin
complexes in the colon compared to the small intestine (Fig 3D).

Accumulation of mutated b-catenin at the adherens junctions is
slower in the colon

Next, we investigated the dynamics of E-cadherin:b-catenin
complexes. We were able to do this as deletion of exon 3 of

b-catenin (and hence activation) produces a smaller protein

which is easily detected by immunoblotting. Thus, in a

VilCreER Catnblox(ex3)/lox(ex3) mouse, all newly produced b-catenin in

intestinal epithelial cells will be smaller (Dex3). Using co-immuno-

precipitation for E-cadherin, the relative amounts of mutant

b-catenin complexed with E-cadherin can be assessed. We induced

VilCreER Catnblox(ex3)/lox(ex3) mice and sampled the small intestine

and the colon after 24 and 48 h. After just 24 h (Fig 4A, day 1),

approximately 70% per cent of the b-catenin bound to E-cadherin is

of the mutated form in the small intestine (72:28 Dex3:wt). In

contrast, the majority of b-catenin in the colon bound to E-cadherin

is of the WT form (35:65 Dex3:wt). By 48 h (day 2), in the small

intestine (SI), approximately 90 per cent of b-catenin bound to

E-cadherin is of the mutant form (90:10 Dex3:wt); similarly, the

ratio in the colon shifted towards the mutant form (63:37 Dex3:wt).

Thus, this shows that the E-cadherin:b-catenin complexes in the

small intestine are rapidly saturated with mutant b-catenin.
We next analysed the ratio in VilCreER Catnblox(ex3)/+ mice. Here,

only half of the newly produced b-catenin will be of the mutant

form, so we hypothesised that saturation would take longer,

especially given the protracted time taken to generate the CPC

phenotype. However, we would expect the mutant form to accumulate

as this would not be turned over by the destruction complex. First,

we examined E-cadherin:b-catenin complexes 4 days post-

Cre induction. We showed that 75% of the b-catenin bound to

E-cadherin is of the mutated form in the small intestine (75:25 Dex3:
wt), whereas the colon has the mutant and the wild-type b-catenin
in a roughly similar ratio (53:47 Dex3:wt). At day 8 after induction,
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approximately 85% of b-catenin bound to E-cadherin in the SI is

mutated (85:15 Dex3:wt) compared to 55:45 Dex3:wt in the colon.

Therefore, this relative increase in the mutant form of b-catenin
compared to the wild-type protein showed that mutant b-catenin
was specifically accumulating with E-cadherin at the adherens

junction. This suggested that this could be acting as a sink for

b-catenin, stopping the mutant b-catenin being translocated into the

nucleus where it would bind TCF/LEF transcription factors and

drive Wnt targets and the CPC phenotype.

Haploinsufficiency for E-cadherin is sufficient for Wnt pathway
activation in the presence of single allele b-catenin mutation

If E-cadherin was acting as a sink and limiting mutant b-catenin
from entering the nucleus, this would predict the following: (i)

when b-catenin can be targeted for destruction, reduction in

E-cadherin levels should have no phenotype, (ii) when there is

mutant b-catenin (Dex), reduction in E-cadherin should cause this

sink to be saturated quicker and hence lead to a translocation of

b-catenin to the nucleus and a CPC phenotype.

To test this hypothesis, we intercrossed AhCreER Catnblox(ex3)/+

mice to mice carrying a conditional knockout E-cadherin allele to

generate AhCreER Catnblox(ex3)/+ Cdh1fl/+ mice and controls

(Boussadia et al, 2002). First, we examined the phenotype of loss of

a single copy of E-cadherin. Five days following Cre induction, mice

heterozygous for E-cadherin (AhCreER Cdh1fl/+ or VilCreER Cdh1fl/+)

showed a reduction in E-cadherin expression to ~60% and

importantly a reduction in E-cadherin:b-catenin complexes assessed

by PLA (Appendix Fig S2A and B). However, despite this reduction,

intestines from these mice showed no phenotype and no increase in

Wnt signalling (Fig EV5A). This is consistent with previous studies

on whole body knockout E-cadherin heterozygotes where there are

also no intestinal phenotypes (Larue et al, 1994; Riethmacher et al,

1995).

Finally, we investigated the phenotype of the AhCreER Catnblox(ex3)/+

Cdh1fl/+ mice. In contrast to the AhCreER Catnblox(ex3)/+ 10 days

post-induction, AhCreER Catnblox(ex3)/+ Cdh1fl/+ showed a CPC

phenotype in both the small and large intestine with nuclear

b-catenin and increased expression of the Wnt target Sox9 (Fig 5A

and B). Indeed, a CPC phenotype with increased proliferation was

already observed in the small intestine by day 5 (Fig EV5). The

phenotype was confirmed using VilCreER Catnblox(ex3)/+ Cdh1fl/+

mice which had a CPC phenotype 4 days post-induction with

increased expression of several Wnt target genes (Axin2, Lgr5,

cMyc, CD44, Appendix Fig S3). Using the intestinal organoid system

described earlier, small intestinal crypts from AhCreER Catnblox(ex3)/+

A

B

Figure 2. Activation of one allele of b-catenin in Lgr5-positive stem cells does not result in colonic lesions.

A Table shows that only homozygous activation of b-catenin (Lgr5CreER Catnblox(ex3)/lox(ex3)) or loss of Apc (Lgr5CreER Apcfl/fl) in Lgr5-positive stem cells results in colonic
lesions in cohorts, sampled when signs of sickness were apparent. There were no lesions observed when only one allele of b-catenin (Lgr5CreER Catnblox(ex3)/+) was
mutated (chi-squared test, P < 0.001).

B Colonic lesions were scored from H&E by identification of disorganised epithelium. Staining for b-catenin and SOX9 confirmed activation of Wnt signalling in the
observed lesions. Scale bar, 100 lm.
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Cdh1fl/+ mice formed spheroids in an R-spondin1-independent

manner 5 days post-induction (Fig 5C). This was in contrast to

AhCreER Catnblox(ex3)/+ mice. Moreover, targeting a copy of

E-cadherin loss in combination with a b-catenin mutation to Lgr5

ISC (Lgr5CreER Catnblox(ex3)/+ Cdh1fl/+) significantly accelerated

tumourigenesis when compared to Lgr5CreER Catnblox(ex3)/+ mice.

Most importantly, when these mice with reduced E-cadherin were

analysed for colonic lesions, 6 of 7 mice had lesions with high

nuclear b-catenin (Fig 5D).

It is interesting to note that when attempting to recapitulate our

crypt culture findings from AhCreER Catnblox(ex3)/+ mice (Fig 5C)

using colonic crypts, we found that the colonic crypts grew more

successfully than the ones from the small intestine despite the fact

that in vivo b-catenin mutation could not transform the colon

(Appendix Fig S5A). A possible explanation for this is the different

EDTA concentration needed to purify the crypts from the small

intestine and the colon (2 and 25 mM EDTA, respectively) which is

known to disrupt the E-cadherin bindings. Indeed, when we anal-

ysed wild-type crypts straight after the EDTA purification, we

observe similar PLA counts for the crypts of both tissues (Appendix

Fig S5B). These changes persist in vitro, when we compared intesti-

nal crypts from VilCreER Apcfl/fl from the small intestine and the

colon (Appendix Fig S6A and B).

Human cancers, characterised by b-catenin mutation, are
associated with reduction in E-cadherin levels

We finally wanted to examine if these observations from the

mouse might possibly translate to human tumourigenesis. Recent

sequencing studies with over 200 CRC showed that mutations

in b-catenin (CTNNB1) in colorectal cancer are very rare,

approximately 5% (11/212). Closer analysis showed that many of

A

D

B
C

Figure 3. Increased E-cadherin:b-catenin levels in colonic crypts of wild-type mice.

A Staining of small intestinal and colonic crypts for E-cadherin. Scale bar, 100 lm.
B Western blot of purified crypts from the small intestine and colon (N = 4 mice).
C qRT–PCR of whole tissue from small intestine and colon. Expression of mRNA (2(�dCt)) calculated relative to GAPDH (N = 3mice). Statistics: one-sided Mann–Whitney U-test.
D Proximity ligation assay for E-cadherin and b-catenin. For each mouse (N = 6), at least 10 crypts per tissue were analysed to calculate the mean. Statistics: one-sided

Mann–Whitney U-test; white scale bar, 50 lm.
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these were not in exon 3 and therefore unlikely to affect b-catenin
degradation. In total, only 2 of 11 mutations were in the most

common exon 3 hotspot (codons 31–45; Appendix Fig S4). Compar-

isons of these mutations with cancers where activating mutations of

CTNNB1 are common such as hepatocellular carcinoma (HCC) or

solid pseudopapillary tumours of the pancreas show very different

patterns of mutations (cbioportal, Cerami et al, 2012; Gao et al,

2013), indicating these maybe passenger mutations (Appendix

Fig S4D).

Given almost all solid pseudopapillary tumours (SPT) have a

b-catenin mutation in exon 3, this suggests deregulation of Wnt

signalling as an essential step for tumourigenesis in this cancer. From

our model, we would predict a change in E-cadherin levels for a b-
catenin activating mutation to have the greatest transforming proper-

ties. Importantly in these SPT tumours, in addition to the nuclear

accumulation of b-catenin, an aberrant localisation of E-cadherin has

been reported (Chetty & Serra, 2008). We therefore analysed a tissue

microarray (TMA) with normal and SPT tissue for E-cadherin:

b-catenin complexes and saw a dramatic decrease in the number of

complexes in SPT tumours, compared to normal tissue (Fig 6A).

Finally, we examined hepatocellular carcinomas (HCC) where

approximately 20% of tumours have a mutation in exon 3 of

b-catenin. Analysing expression data from 269 patients (TCGA

provisional), we saw a significant negative correlation of E-cadherin

with several Wnt target genes (Fig 6B).

Discussion

Although APC is well established in controlling the Wnt signalling

pathway, there has been controversy over the role of the activation

of Wnt signalling in the initiation of CRC. Much of this debate has

A B

Figure 4. E-cadherin saturates with mutant b-catenin over time.

A Immunoprecipitation (IP) of E-cadherin from VilCreER Catnblox(ex3)/lox(ex3) mice, 24 h (day 1, top) and 48 h (day 2, bottom) after induction. The ratio of wild-type (WT,
top lane) and mutant exon 3 b-catenin (Dex3, bottom lane) bound to E-cadherin (IP:Ecad) was calculated for each tissue. Graphs show average of experiments (N = 3
mice for each genotype and time point); error bars represent s.e.m.

B IP of E-cadherin from VilCreER Catnblox(ex3)/+ mice at day 4 and day 8. Graphs show average of experiments (N = 3 mice for each genotype and time point); error bars
represent s.e.m.
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been due to the failure to detect nuclear b-catenin at the early

stages of the disease and its relatively heterogeneous nature at later

stages. Moreover, data from experiments in zebrafish have

suggested other pathways to be very important for the phenotypes

of Apc loss (Phelps et al, 2009). This coupled with the rarity of

b-catenin mutations (after early studies suggesting much higher

rates (Sparks et al, 1998)) and the lack of mutual exclusivity with

APC mutations has led to many discussions on the reasons for APC

mutation in CRC.

Here, we provide definitive in vivo proof (in the murine intestine)

that activation of Wnt signalling by loss of the destruction complex

or bi-allelic b-catenin mutation is sufficient to drive rapid intestinal

transformation. In contrast, upon monoallelic deletion of exon 3,

the mutant form of b-catenin takes much longer to accumulate in

the small intestine and lead to a CPC phenotype. In the colon,

monoallelic mutation of b-catenin did not drive a CPC phenotype

(even 25 days post-induction) and did not cause lesions when

targeted to the Lgr5 compartment. This suggests that the level of

Wnt deregulation required to transform the colorectal epithelium is

higher than in the small intestine. This idea often referred to the

“just right” model has previously been associated with different

levels of Wnt signalling induced by different APC mutations (Fodde

& Brabletz, 2007; Buchert et al, 2010). Moreover, within the

ApcMin mouse, the distribution of tumours in the small and large

A

C

B

D

Figure 5. Haploinsufficiency for E-cadherin in the presence of single allele b-catenin mutation leads to Wnt deregulation.

A AhCreER Catnblox(ex3)/+ compared to AhCreER Catnblox(ex3)/+ Cdh1fl/+ at day 10 post-induction. Note the presence of colonic lesions in the colon of AhCreER Catnblox(ex3)/+

Cdh1fl/+ mice (arrows). Scale bar, 100 lm; red bar indicates proliferative zone (BrdU).
B Scoring of BrdU-positive cells per half-crypt in the small intestine of wild-type, AhCreER Cdh1fl/+, AhCreER Catnblox(ex3)/+ and AhCreER Catnblox(ex3)/+ Cdh1fl/+ mice at day

10 post-induction. N ≥ 3, at least 25 crypts per mouse were scored. There was significantly higher proliferation in the AhCreER Catnblox(ex3)/+ Cdh1fl/+ mice (P = 0.028,
one-sided Mann–Whitney U-test).

C In vitro growth of crypts (small intestine) from mice as indicated at day 5 post-induction without R-spo1. Quantification of sphere-forming efficiency of AhCreER

Catnblox(ex3)/+ AhCreER Catnblox(ex3)/+ Cdh1fl/+, day 5 post-induction. N = 3 mice per genotype, mean of 6 technical replicates per mouse, P = 0.04 one-sided Mann–
Whitney U-test.

D Survival of Lgr5CreER Catnblox(ex3)/+ and Lgr5CreER Catnblox(ex3)/+ Cdh1fl/+ shows significant acceleration (P = 0.000123, log-rank test) after E-cadherin reduction. About
85% (6/7 mice) had colonic lesions, as identified with b-catenin IHC in contrast to Lgr5CreER Catnblox(ex3)/+ mice.
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intestines has been suggested to reflect Wnt gradients within the

tissue (Leedham et al, 2013). Differences between the colon and

small intestine in Wnt signalling have been reported in mice defi-

cient for Tcf-4. In this case, deletion of Tcf-4 stopped the formation

of small intestinal crypts, but colonic crypts were still present

(Korinek et al, 1998).

The differences between the small intestine and the colon corre-

lated with higher E-cadherin levels and increased E-cadherin:

b-catenin complexes in colonic crypts. We show that E-cadherin can

act as a sink for mutated b-catenin and that the adherens junctions

saturate over time with the mutant form of b-catenin. Importantly, a

reduction in the expression of E-cadherin leads to a quicker accumu-

lation of sufficient b-catenin to facilitate transformation (Fig 7). To

our knowledge, this is the first demonstration in vivo that levels of

E-cadherin can be limiting to cancer initiation. It is interesting to

note that mice heterozygous for E-cadherin (Cdh1+/�) have an

increased tumour burden when crossed to the Apc1638N/+ mouse

model, a long latency model of Apc-loss induced tumourigenesis

(Smits et al, 2000).

When we examined solid pseudopapillary tumours of the

pancreas, a tumour characterised by b-catenin mutations within

exon 3, these tumours showed a strong reduction in E-cadherin:

b-catenin complexes. Moreover in HCC, a tumour type which has

approximately 20% b-catenin exon 3 mutations, there was a good

correlation between reduction in E-cadherin and activation of Wnt

signalling targets. Thus, it may be that in these cancers, E-cadherin

limits the precise levels of Wnt signalling driven by b-catenin muta-

tion. Thus, downregulation of E-cadherin in these tumours may

drive tumour progression. It should also be noted that opposing

patterns of Wnt signalling and E-cadherin have been shown in

A

B

Figure 6. Human cancers, characterised by b-catenin mutation, are associated with reduction in E-cadherin levels.

A Proximity ligation assay for E-cadherin:b-catenin on a tissue microarray of SPT patients. PLA dots/cells in normal and tumour tissue were counted. Each dot in the
boxplot represents the average for a single patient. Staining for b-catenin confirms accumulation of nuclear b-catenin in tumour tissue. Representative pictures are
shown. N = 18, statistics: Mann–Whitney U-test, P = 0.0009051. White scale bar, 50 lm.

B Correlation of several Wnt target genes with the expression of E-cadherin (CDH1) was analysed in 269 HCC patients (TCGA provisional), and linear regression line
(blue) and confidence region (shaded) were added.
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murine liver, with b-catenin higher in zone 3 of the liver and

E-cadherin in zone 1. Therefore, one might predict that b-catenin
mutations would yield a greater phenotype in hepatocytes from

zone 3 of the liver versus zone 1 (Benhamouche et al, 2006). Hence,

one could speculate E-cadherin levels might modulate the cell of

origin of HCC that carry a b-catenin mutation.

One key question from our work is how does this translate to

human cancer? Why do humans not get small intestinal cancer with

b-catenin exon 3 mutations rather than CRC with APC mutations?

One obvious difference is in sporadic human CRC, tumours develop

over a number of years and the sequential mutations in APC may

provide different selective benefits and other functions of APC may

be very important in human carcinogenesis. Data exist showing that

stepwise Apc loss might also induce a more dramatic phenotype

(Fischer et al, 2012). Moreover, it is also possible that some of the

other consequences of APC mutation may only be revealed when

there are only a small number of APC-deficient cells rather than

entire crypts. For example, the Wnt-independent roles of APC in

microtubules, centrosomes and mitosis have been suggested to

modify stem cell division and could favour retention of APC-

deficient ISC. We have observed clear differences between Gsk3 and

Apc deletion in the ability to respond to microtubule-stabilising

drugs which show these other functions of APC are important

in vivo (Radulescu et al, 2010).

One could also imagine different dietary carcinogens and micro-

biota leading to differential mutational spectra that might favour the

observed loss of functions mutations in APC rather than the very

specific activating mutations required to produce non-degradable

b-catenin.
Another potential reason for the lack of b-catenin mutations in

both small intestinal and colon cancer is suggested from recent work

investigating the selective advantage of different tumour-promoting

mutations in murine small and large intestinal epithelium. The

Winton group showed that a single inactivating Apc mutation in the

intestine had an advantage over wild-type stem cells (Vermeulen

et al, 2013). This increased the likelihood that a stem cell carrying

this mutation would be retained to repopulate the entire crypt. A

second mutation in Apc further increased the fitness of the stem cell

compared to wild-type and was even more likely to repopulate the

entire crypt. However, it is of interest to note that despite these

selective advantages, given the increase in fitness never increased

the probability of repopulating crypt to 1 (WT is neutral 0.5, the

Apc+/� 0.62 and Apc�/� 0.79), then on many occasions, cells carry-

ing Apc mutations would be lost. From our work, we would suggest

that as it takes a protracted time for the b-catenin exon 3 mutation

to have a phenotype in the small intestine, this mutation would

probably be neutral (0.5) for some time. Thus, given neutral drift

within the intestine, one might predict that these mutant cells would

be lost.

For many years, there has been much discussion of why ApcMin

mice (a model of FAP) mainly develop small intestinal tumours

rather than FAP where patients preferentially develop colon

tumours, though they will eventually develop duodenal tumours.

Our data show acute Apc loss manifests phenotypes in both the

A B

Figure 7. Model of single b-catenin mutation and interaction with E-cadherin in the small intestine and colon.

A, B Model of a single activating b-catenin mutation in the murine small intestine and the colon. In contrast to the small intestine (A), the increased levels of
E-cadherin in the colon complexed with mutant b-catenin prevent its accumulation in the nucleus (B).
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small intestine and colon which does not explain the tropism for

small intestine in the mouse. A recent study by Tomasetti and

Vogelstein (Tomasetti & Vogelstein, 2015) has suggested that

differences in stem cell proliferation within colon versus small intes-

tine could explain the tropism to colon in the human CRC.

We have also shown that within the intestine, GSK3 is only obvi-

ously limiting to the Wnt signalling pathway. Given GSK3 has many

functions within the cells and is highly expressed, this suggests

other kinases can compensate grossly for these activities within the

intestine. It has previously been postulated that GSK3 inhibition

may also be of therapeutic relevance for diabetes. One obvious

concern is that long-term GSK3 inhibition might predispose to

colorectal cancer. Our data here and indeed from hypomorphic

mutants in Apc (Buchert et al, 2010) argue that to induce the crypt-

progenitor phenotype and tumourigenesis, complete gene function

has to be deleted rather than being simply inhibited. Thus, as GSK3

inhibitors would only reduce rather than ablate GSK3, it is unlikely

this would predispose to cancer. Moreover, given the fact that there

are 4 alleles of GSK3, mutation of a single allele would not activate

the Wnt pathway much further, so there would be no selection for

loss of GSK3, reinforcing the notion that GSK3 inhibition would not

drive CRC. Therefore, there may be a therapeutic opportunity for

GSK3 in diabetes.

In summary, we show that a single b-catenin mutation is not as

potent in activating the Wnt signalling pathway as loss of Apc.

Furthermore, we show that E-cadherin levels can limit the trans-

forming potential of an activating b-catenin mutation.

Materials and Methods

Mouse experiments

All experiments were performed under the UK Home Office guide-

lines. The alleles used in this study were as follows: AhCreER (Kemp

et al, 2004) VilCreER (el Marjou et al, 2004), AhCre (Ireland et al,

2004), Lgr5CreER (Barker et al, 2007) Catnb1lox(ex3) (Harada et al,

1999), Gsk3alphafl, Gsk3betafl (Patel et al, 2008), Apcfl (Shibata et al,

1997) and Cdh1fl (Boussadia et al, 2002). Cre induction strategies are

described in the Appendix Supplementary Methods. N numbers for

the animal experiments are provided on the figure legends.

Immunohistochemistry

Standard immunohistochemistry techniques were used throughout

this study. The following primary antibodies were used: BrdU (1/

200, #347580, BD Biosciences), pGSKB-Ser9 (1/200, #9336, Cell

Signaling), b-catenin (1/50 #610154, BD Biosciences), cMyc (1/200,

sc-764, Santa Cruz), Sox9 (1/500, #AB5535 Chemicon), lysozyme

(1/200, DAKO #A0099) and E-cadherin (1/200, R&D Systems

AF748). Staining for nuclear b-catenin was performed on tissue

samples fixed at 4°C for less than 24 h in 10% formalin prior to

processing.

Immunoblotting

Standard Western blot techniques were used. Crypts from the small

and large intestine were purified by incubation with 2 and 25 mM

EDTA/PBS (respectively) for 30 min at 4°C. Crypts were further

purified by centrifugation with low speed (50 × g, 3 min). The

following antibodies were used: E-cadherin (1/5,000, BD Transduc-

tion Lab, #610182); b-actin (1/5,000, Sigma A2228).

Immunoprecipitation

Small intestinal and colonic tissue (~4 cm) was lysed in lysis buffer

(200 mM NaCl, 75 mM Tris–HCl [pH 7], 7.5 mM EDTA, 7.5 mM

EGTA, 0.15% [v/v] Tween-20). Lysates were clarified by centrifuga-

tion at 16,000 × g for 10 min at 4°C. Magnetic beads conjugated to

anti-mouse IgG (Dynabeads) were incubated with 1 mg of protein

lysates, 1 lg of either monoclonal anti-E-cadherin (BD Biosciences

#610182) or IgG isotype control (Sigma) for 1 h at 4°C with

constant rotation. After several washes with lysis buffer, bound

proteins were eluted from the beads by boiling at 100°C for 5 min in

SDS reducing buffer. Bound proteins and 5 lg of total lysates (Input)

were run on 4–12% Bis–Tris Gradient SDS gel and probed for

b-catenin (1/1,000 BD Biosciences, #610154).

Proximity Ligation Assay (PLA)

PLA was performed on tissue samples fixed at 4°C for < 24 h in 10%

formalin prior to processing using the Duolink Detection kit (Sigma)

according to the manufacturer’s instructions. Briefly, after citrate

buffer-mediated antigen retrieval, the slides were incubated with goat

E-cadherin (1/200, R&D Systems AF748) and mouse b-catenin
(1/2,000 for mouse tissue, 1/200 for human tissue, #610154, BD

Biosciences) overnight. Detection was performed with PLA probes

(anti-goat and anti-mouse) conjugated to oligonucleotides. After liga-

tion, amplification detection with a fluorescent probe, slides were

imaged on a Zeiss LSM confocal microscope. Z-stacks with 40× objec-

tives were taken. PLA dots in crypts were analysed with ImageJ and

either calculated as area fraction or count/nuclei.

Sphere culture

Crypts were purified from mice as previously described (Sato et al,

2009). Crypts were seeded in growth factor-reduced Matrigel (BD

Biosciences) with the addition of EGF and Noggin (both Peprotech),

without R-spo1 or with 50 ng/ml R-spo1 (R&D Systems). About 300

crypts were plated per 20 ll matrigel/well, and procedures were

carried out within 3 h after sacrificing the mouse. Representative

photographs were taken after 7 days.

Human TMA of solid papillary tumours (SPT) of the pancreas

Tissue microarray of 18 SPT patients was used as described before,

and normal tissue was used as control (Serra et al, 2007). PLA was

performed as described above.

qRT–PCR of mouse intestine

For detailed description and primer sequences, see Appendix

Supplementary Methods.

Expanded View for this article is available online:

http://emboj.embopress.org
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