2,248 research outputs found

    The GALILEO GALILEI small-satellite mission with FEEP thrusters (GG)

    Get PDF
    The Equivalence Principle, formulated by Einstein generalizing Galileo’s and Newton’s work, is a fundamental principle of modern physics. As such it should be tested as accurately as possible. Its most direct consequence, namely the Universality of Free Fall, can be tested in space, in a low Earth orbit, the crucial advantage being that the driving signal is about three orders of magnitude stronger than on Earth. GALILEO GALILEI (GG) is a small space mission designed for such a high-accuracy test. At the time of print, GG has been selected by ASI (Agenzia Spaziale Italiana) as a candidate for the next small Italian mission. Ground tests of the proposed apparatus now indicate that an accuracy of 1 part in 1017 is within the reach of this small mission

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP

    On the equivalence principle and gravitational and inertial mass relation of classical charged particles

    Full text link
    We show that the locally constant force necessary to get a stable hyperbolic motion regime for classical charged point particles, actually, is a combination of an applied external force and of the electromagnetic radiation reaction force. It implies, as the strong Equivalence Principle is valid, that the passive gravitational mass of a charged point particle should be slight greater than its inertial mass. An interesting new feature that emerges from the unexpected behavior of the gravitational and inertial mass relation, for classical charged particles, at very strong gravitational field, is the existence of a critical, particle dependent, gravitational field value that signs the validity domain of the strong Equivalence Principle. For electron and proton, these critical field values are gc4.8×1031m/s2g_{c}\simeq 4.8\times 10^{31}m/s^{2} and gc8.8×1034m/s2g_{c}\simeq 8.8\times 10^{34}m/s^{2}, respectively

    Force-free twisted magnetospheres of neutron stars

    Get PDF
    The X-ray spectra observed in the persistent emission of magnetars are evidence for the existence of a magnetosphere. The high-energy part of the spectra is explained by resonant cyclotron upscattering of soft thermal photons in a twisted magnetosphere, which has motivated an increasing number of efforts to improve and generalize existing magnetosphere models. We want to build more general configurations of twisted, force-free magnetospheres as a first step to understanding the role played by the magnetic field geometry in the observed spectra. First we reviewed and extended previous analytical works to assess the viability and limitations of semi-analytical approaches. Second, we built a numerical code able to relax an initial configuration of a nonrotating magnetosphere to a force-free geometry, provided any arbitrary form of the magnetic field at the star surface. The numerical code is based on a finite-difference time-domain, divergence-free, and conservative scheme, based of the magneto-frictional method used in other scenarios. We obtain new numerical configurations of twisted magnetospheres, with distributions of twist and currents that differ from previous analytical solutions. The range of global twist of the new family of solutions is similar to the existing semi-analytical models (up to some radians), but the achieved geometry may be quite different. The geometry of twisted, force-free magnetospheres shows a wider variety of possibilities than previously considered. This has implications for the observed spectra and opens the possibility of implementing alternative models in simulations of radiative transfer aiming at providing spectra to be compared with observations.Comment: 16 pages, 17 figures, A&A accepte

    The GRAAL high resolution BGO calorimeter and its energy calibration and monitoring system

    Get PDF
    We describe the electromagnetic calorimeter built for the GRAAL apparatus at the ESRF. Its monitoring system is presented in detail. Results from tests and the performance obtained during the first GRAAL experiments are given. The energy calibration accuracy and stability reached is a small fraction of the intrinsic detector resolution.Comment: 19 pages, 14 figures, submitted to Nuclear Instruments and Method

    External and intrinsic anchoring in nematic liquid crystals: A Monte Carlo study

    Get PDF
    We present a Monte Carlo study of external surface anchoring in nematic cells with partially disordered solid substrates, as well as of intrinsic anchoring at free nematic interfaces. The simulations are based on the simple hexagonal lattice model with a spatially anisotropic intermolecular potential. We estimate the corresponding extrapolation length bb by imposing an elastic deformation in a hybrid cell-like nematic sample. Our estimates for bb increase with increasing surface disorder and are essentially temperature--independent. Experimental values of bb are approached only when both the coupling of nematic molecules with the substrate and the anisotropy of nematic--nematic interactions are weak.Comment: Revisions primarily in section I

    LARES/WEBER-SAT and the equivalence principle

    Full text link
    It has often been claimed that the proposed Earth artificial satellite LARES/WEBER-SAT-whose primary goal is, in fact, the measurement of the general relativistic Lense-Thirring effect at a some percent level-would allow to greatly improve, among (many) other things, the present-day (10^-13) level of accuracy in testing the equivalence principle as well. Recent claims point towards even two orders of magnitude better, i.e. 10^-15. In this note we show that such a goal is, in fact, unattainable by many orders of magnitude being, instead, the achievable level of the order of 10^-9.Comment: LaTex, 4 pages, no figures, no tables, 26 references. Proofs corrections included. To appear in EPL (Europhysics Letters

    Constraining the relative inclinations of the planets B and C of the millisecond pulsar PSR B1257+12

    Full text link
    We investigate on the relative inclination of the planets B and C orbiting the pulsar PSR B1257+12 in connection with potential violations of the equivalence principle (Abridged).Comment: LaTex2e, 10 pages, 1 table, 3 figures, 17 references. Small stylistic changes. Version to appear in Journal of Astrophysics and Astronomy (JAA
    corecore