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ABSTRACT

Context. The X-ray spectra observed in the persistent emission of magnetars are evidence for the existence of a magnetosphere. The
high-energy part of the spectra is explained by resonant cyclotron upscattering of soft thermal photons in a twisted magnetosphere,
which has motivated an increasing number of efforts to improve and generalize existing magnetosphere models.
Aims. We want to build more general configurations of twisted, force-free magnetospheres as a first step to understanding the role
played by the magnetic field geometry in the observed spectra.
Methods. First we reviewed and extended previous analytical works to assess the viability and limitations of semi-analytical ap-
proaches. Second, we built a numerical code able to relax an initial configuration of a nonrotating magnetosphere to a force-free
geometry, provided any arbitrary form of the magnetic field at the star surface. The numerical code is based on a finite-difference
time-domain, divergence-free, and conservative scheme, based of the magneto-frictional method used in other scenarios.
Results. We obtain new numerical configurations of twisted magnetospheres, with distributions of twist and currents that differ from
previous analytical solutions. The range of global twist of the new family of solutions is similar to the existing semi-analytical models
(up to some radians), but the achieved geometry may be quite different.
Conclusions. The geometry of twisted, force-free magnetospheres shows a wider variety of possibilities than previously considered.
This has implications for the observed spectra and opens the possibility of implementing alternative models in simulations of radiative
transfer aiming at providing spectra to be compared with observations.
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1. Introduction

Anomalous X-ray pulsars (AXPs) and soft gamma-ray re-
peaters (SGRs) are a class of neutron stars (NSs) character-
ized by high X-ray quiescent luminosities, short X-ray bursts,
and giant flares (for SGRs). They are believed to be magne-
tars (Duncan & Thompson 1992; Thompson & Duncan 1996):
young (P/2Ṗ ∼ 102−105 yr) NSs with very strong magnetic
fields ∼1014−1015 G. Magnetars are supposedly born with a very
short spin period (few milliseconds), which causes the formation
of an intense inner magnetic field via dynamo processes and
a subsequent rapid loss of rotational energy by means of mag-
netic braking. As more and better data become available in the
last decade1, the separation between the two traditional classes
(SGRs and AXPs) has become thinner, and they are no longer
considered different classes. All SGRs and most of AXPs have
shown sporadic bursts in the X and γ bands, and the recent dis-
covery of transient magnetars has made the situation even less
clear. Currently, our interpretation of the term magnetars is be-
ing reconsidered (see Mereghetti 2008; Rea & Esposito 2011 for
observational reviews). In general, magnetars are characterized
by long periods P ∼ 2−12 s and high X-ray persistent luminosi-
ties LX ∼ 2×1033−2×1035 erg s−1, which point to the magnetic
field decay as the main source of energy, unlike radio pulsars,
fed by the loss of rotational energy. One key ingredient in those
models that try to explain the variety of magnetar phenomenol-
ogy and their spectra is the presence of toroidal fields, of the

1 The updated catalog of these sources can be found at http://www.
physics.mcgill.ca/~pulsar/magnetar/main.html

same order of magnitude or even larger than the poloidal com-
ponent, both in the interior and in the external magnetosphere.

The object of this paper is the modeling of the magneto-
sphere of magnetars, which is crucial because it is one of the
main ingredients in the formation of spectra. The difficulty in
building fully consistent solutions of NS magnetospheres is such
that, after more than 40 years, the aligned rotator model pro-
posed by Goldreich & Julian (1969) still remains very popular
for explaining the basic features of a rotating magnetosphere. We
must point out that the aligned rotator model, with all its variants,
is surely a naive description of pulsars that has been strongly
criticized (e.g., Michel 1980), among other reasons, simply be-
cause it cannot explain why pulsars pulsate. A further refinement
consists of the ideal MHD approximation for force-free magne-
tospheres, which leads to the so-called pulsar equation. This is
simply the balance of the electromagnetic forces around the ro-
tating neutron star under the assumption of axial symmetry and
it neglects the pressure, inertial, and gravitational terms. The ro-
tationally induced electric field is required to be perpendicular
to the magnetic field. The latter can in general have an azimuthal
component that twists the poloidal field lines. This toroidal com-
ponent has to be sustained by currents, whose shape is the source
term of the pulsar equation: it is the fundamental parameter to be
chosen in order to find the corresponding geometric configura-
tion of the magnetic field.

The problem is analytically solvable only for a few sim-
ple, ad-hoc choices of the current, such as in Michel (1973b),
but these solutions generally present unphysical features in
some border regions. An alternative numerical approach by
Contopoulos et al. (1999) is useful to construct consistent
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force-free models, with a smooth matching across the light cylin-
der. In this model the corotating region only hosts an untwisted
dipolar magnetic field, and the focus is on the bundle of open
twisted lines that cross the light cylinder and the resulting output
power. The model was refined by Gruzinov (2005) and extended
to the time-dependent, misaligned case by means of 3D simula-
tions by Spitkovsky (2006) and Kalapotharakos & Contopoulos
(2009).

Nowadays, X-ray instruments allow us to obtain more and
more information from the spectra of magnetars. An especially
interesting feature in the persistent emission of all of the magne-
tar candidates is that their spectra can be well fitted with a ther-
mal component (0.4−0.7 keV) plus a hard nonthermal tail, de-
scribed by a power law with photon index β ∼ 3−4 (Mereghetti
2008). This hard component is commonly attributed to resonant
Compton scattering, which becomes important in the presence of
a strong current (i.e., high charge density). For this reason, much
attention has been given to the modeling of currents flowing in
a twisted magnetosphere and obtaining estimates of the charge
carrier density and the corresponding resonant optical depth.
Lyutikov & Gavriil (2006) propose a semi-analytical 1D model
able to describe the basic properties of radiation transfer across
a twisted magnetosphere. More accurate 3D Monte Carlo sim-
ulations have been performed for the nonrelativistic (Fernández
& Thompson 2007; Nobili et al. 2008a) and relativistic cases
(Nobili et al. 2008b). Fernández & Davis (2011) discuss the im-
plications of the outgoing polarization. The implementation in
XSpec and the systematic fits to observational data have been
successfully performed by Rea et al. (2008) and Zane et al.
(2009) for the 1D and 3D cases, respectively. All these very
remarkable results rely on the same family of models: the self-
similar twisted dipole proposed by Thompson et al. (2002), ex-
tended to higher multipoles by Pavan et al. (2009), which repre-
sents a semi-analytical, easy-to-implement solution to the pulsar
equation. However, this model lacks generality, as it relies on a
very particular choice of the form of the current.

We note that force-free magnetosphere models rely on a
purely macrophysical approach but a fully coherent microphys-
ical description is still lacking: how are the currents and electric
fields in a given model generated and sustained? Which parti-
cles are present (electrons, ions, pairs)? Where do they come
from? Which velocity distribution can be assigned to each kind
of particle? In the magnetar framework, there are some excel-
lent attempts to give a microphysical description of coronae.
Beloborodov & Thompson (2007) deal with the problem con-
sidering a deviation from force-free equilibrium, which has to
be introduced to explain the production of pairs, but many ques-
tions remain open. Given the complexity of the problem, one
has to decide whether to focus on detailed microphysical pro-
cesses of an approximate macrophysical solution or to improve
the large-scale electrodynamics solutions by gradually removing
some of the simplifying hypotheses.

In this article, we present our efforts to obtain some more
general configurations of a twisted magnetosphere and to esti-
mate the dependence of the spectrum on the geometric config-
uration. In Sect. 2, we set the formalism needed to describe the
problem and present some analytical and semi-analytical gener-
alizations of previous works. In Sect. 3 we describe the numer-
ical code used to build force-free configurations and the battery
of tests performed to verify the code. We pay special attention
to the effect of key input parameters and the convergence of the
method. In Sect. 4 we present new results for magnetosphere
models, and explore the sensitivity of the relevant output (cur-
rent, charge distribution, and resonant optical depth) to different

Fig. 1. Relation between magnetic flux function Γ, enclosed current
function I(Γ), and toroidal field.

input parameters. In Sect. 5 we summarize our findings and out-
line future improvements.

2. Analytical and semianalytical solutions

2.1. The pulsar equation

We consider an NS with a magnetic field B and angular velocity
Ω. Assuming that the plasma is a perfect conductor in vicinity
of the star, rotation induces an electric field given by

E = −Ω × r
c
× B. (1)

where c is the velocity of light. Neglecting centrifugal (i.e., in-
ertial), collisional, and gravitational terms compared to electro-
magnetic forces, the force equilibrium equation is expressed by

ρeE +
1
c

J × B = 0, (2)

where ρe is the charge density and J the current density.
Assuming axial symmetry (aligned rotator) and working in
spherical coordinates (r, θ, φ), we introduce the magnetic flux
function Γ(r, θ), in terms of which the poloidal field is

Bp =
∇Γ(r, θ) × φ̂

r sin θ
, (3)

where φ̂ is the unit azimuthal vector. With the choice of gauge
Γ = 0 on the axis, the function Γ(r, θ) is related to the
φ-component of the potential vector by

Γ(r, θ) = Aφ(r, θ)r sin θ, (4)

and it is constant along a field line (Bp · ∇Γ = 0). Thus its value
labels the axisymmetric surface S Γ given by the azimuthal ro-
tation of one field line. The magnetic flux flowing within the
surface S Γ, with value ΦΓ(B) = 2πΓ, is conserved by definition.
A toroidal component (i.e., φ-component in axial symmetry) of
the magnetic field is present if sustained by poloidal currents.
The enclosed current I flowing within S Γ (see blue arrows in
Fig. 1 and note that the force-free condition implies that currents
flow parallel to the surfaces S Γ) has to be a function of only Γ,
with the only requirement being that I(0) = 0. Thus we have the
freedom of choosing the enclosed current function I(Γ), and by
Ampère’s law, the φ-component of the magnetic field is related
to I by

Bφ =
2

cr sin θ
I(Γ). (5)
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For a given magnetosphere model, it is useful to define the twist
of a field line as the azimuthal displacement between its sur-
face footprints (for a dipolar-like configuration, one footprint
in each hemisphere). The integral of the local displacement
δφ(r, θ) = Bφδθ/Bθ sin θ along the magnetic field line, lΓ, be-
tween its surface footprints at magnetic colatitudes θ1,2(Γ) is the
line twist

Δφtw(Γ) ≡
∫ θ2

θ1

Bφ(r(θ, Γ), θ)

Bθ(r(θ, Γ), θ) sin θ
dθ, (6)

where the dependence r(θ, Γ) can be found by solving the field
line equations. The function Δφtw(Γ) is used to characterize a
magnetosphere.

We then return to the equilibrium Eq. (2). In axial symme-
try, only poloidal components of the electric field are allowed.
Considering the poloidal component of Eq. (2) in cylindrical co-
ordinates (ρ, φ, z) and denoting the radius of the light cylinder by
rl = c/Ω, we obtain the so-called pulsar equation (Scharlemann
& Wagoner 1973; Michel 1973b):⎛⎜⎜⎜⎜⎝1 − ρ2

r2
l

⎞⎟⎟⎟⎟⎠ (Γzz + Γρρ) − 1
ρ

⎛⎜⎜⎜⎜⎝1 + ρ2

r2
l

⎞⎟⎟⎟⎟⎠Γρ = − 4
c2

I(Γ)
dI
dΓ
, (7)

where we indicate the partial derivatives of Γ with a subscript.
The terms (ρ/rl)2 arise from the Coulomb force ρeE. The pulsar
equation is actually the Grad-Shafranov equation for force-free
fields. In general, Eq. (7) has to be solved numerically. Even
for trivial choices of untwisted configurations (I(Γ) = 0), the
corotation velocity of the charged particles distorts the vacuum
solutions, resulting in open field lines near the light cylinder
ρ ∼ O(rl) (Michel 1973a). The only fully analytical solution
including rotation and a smooth matching across the light cylin-
der is the split twisted monopole presented by Michel (1973b),
in which the field lines are radial and the magnetic field changes
sign between the northern and southern hemispheres. A current
sheet at the equator is needed to ensure the divergence-free con-
dition. This is a wind-like solution inappropriate to describing
the region with closed field lines. Later, the numerical solution
by Contopoulos et al. (1999) for the first time provided a com-
plete description of a magnetosphere, whose closed lines are un-
twisted, while the wind zone has a configuration that is very sim-
ilar to the split monopole.

In the case of a nonrotating star (magnetars are slow rotators
and this may be a reasonable approximation for some problems),
no electric field is induced and the equilibrium equation is sim-
ply J×B = 0: the force-free condition only requires that currents
flow parallel to magnetic field lines. In this limit, we can refor-
mulate the whole problem with the simple equation

∇ × B = α(Γ)B, (8)

where the function α(Γ) is related to the enclosed current func-
tion introduced in Eq. (5) by

α(Γ) =
2
c

dI(Γ)
dΓ
· (9)

The pulsar equation in spherical coordinates is now expressed as

∂2Γ

∂r2
− cos θ

sin θ
1
r2

∂Γ

∂θ
+

1
r2

∂2Γ

∂θ2
= −α(Γ)

∫
α(Γ)dΓ. (10)

Next we expand the magnetic flux function in Legendre polyno-
mials, Pl(μ):

Γ(r, μ) = Γ0

∑
l

r
r�

al(r)(1 − μ2)
dPl(μ)

dμ
, (11)

where μ = cos θ, al(r) is the dimensionless radial function, r�
the radius of the star, and Γ0 the magnetic flux normalization.
Denoting the strength at pole by B0, we hereafter choose

Γ0 =
B0r2
�

2
· (12)

This leads to the following expression for the poloidal magnetic
field components:

Br =
B0

2
r�
r

∑
l

l(l + 1)Pl(μ)al(r),

Bθ = −B0

2
r�
r

√
1 − μ2

∑
l

dPl(μ)
dμ

d(ral(r))
dr

· (13)

We can obtain the governing differential equation from Eq. (10):

B0r�
2

(
1 − μ2

)∑
l

dPl(μ)
dμ

[
d2(ral(r))

dr2
− l(l + 1)

al(r)
r

]
=

−α(Γ)
∫
α(Γ)dΓ. (14)

Finally, by using the orthogonality relations of Legendre poly-
nomials, we have

B0r�
l(l + 1)
2l + 1

[
d2(ral(r))

dr2
− l(l + 1)

al(r)
r

]
=

−
∫ 1

−1

dPl(μ)
dμ

[
α(Γ)

∫
α(Γ)dΓ

]
dμ. (15)

The righthand side depends on the functional form of α(Γ) and
is responsible for the coupling between different multipoles. For
constant α the equation has analytical solutions (see Sect. 2.2),
while the problem is more difficult for other choices. The rest of
this section is devoted to reviewing some possible choices that
make the problem (semi)analytically solvable in the nonrotating
case, which applies to magnetars.

2.2. Constant α: Bessel solutions

The choice of constant α = k/r�, where k is a dimensionless pa-
rameter, leads to decoupled equations for each single multipole,
so that for each l, we must independently solve the equation

r2 d2al(r)
dr2

+ 2r
dal(r)

dr
+

⎡⎢⎢⎢⎢⎢⎣
(
k

r
r�

)2

− l(l + 1)

⎤⎥⎥⎥⎥⎥⎦ al(r) = 0. (16)

The analytic solutions of this equation are the spherical Bessel
functions of the first and second kinds:

Jl(x) = (−x)l

(
1
x
∂

∂x

)l sin x
x
, (17)

Yl(x) = (−x)l+1

(
1
x
∂

∂x

)l cos x
x
, (18)

where x = kr/r�. The constant ratio r�/k gives the typical scale-
length of the magnetic field. The physical solutions (from which
the vacuum solution Bp ∝ r−(l+1) can be recovered in the limit
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k → 0) are represented by the functions of the second kind,
explicitly:

al(r) = clYl(x),

Br =
B0

2
r�
r

∑
l

l(l + 1)Pl(μ)clYl(x),

Bθ = −B0

2
r�
r

√
1 − μ2

∑
l

dPl(μ)
dμ

cl
d(xYl(x))

dx
, (19)

Bφ = k
B0

2

√
1 − μ2

∑
l

dPl(μ)
dμ

clYl(x),

where cl is the weight of the l-multipole.
This choice of constant α has been followed in several stud-

ies of the solar corona (Chiu & Hilton 1977; Seehafer 1978) or
applied to the region with open field lines of the pulsar magneto-
sphere (Scharlemann & Wagoner 1973). The Yl(x) functions are
oscillatory at large distances, and the magnetic field components
change sign as r varies (at fixed parameter k). The problem with
this family of analytical solutions is that, at large distances, all
components (which have the same radial dependence for any l)
decay too slowly: Br → r−2, Bθ → r−1, Bφ → r−1. Thus this con-
figuration cannot be a solution for the whole space, as it would
imply infinite magnetic energy in an infinite volume. Also, these
solutions cannot be continuously matched with vacuum, because
it would require that, at the same radius rout, Bφ(rout) = 0 and
Br(rout) � 0, a condition that cannot be satisfied because those
two components are both proportional to the Yl(x) functions and
have the same zeros.

2.3. Self-similar models

Low & Lou (1990), followed by Wolfson (1995) and other au-
thors, studied a particular class of self-similar solutions to de-
scribe the opening of the solar coronal magnetic field lines due
to their shear. Thompson et al. (2002) applied the same approach
in the magnetar framework. Assuming a radial power-law form
for the magnetic flux function and a radial dependence α ∝ 1/r,

Γ = Γ0

( r�
r

)p

F(μ), (20)

α =
kss

r
|F(μ)|1/p = kss

r�

( |Γ|
Γ0

)1/p

, (21)

the enclosed current function is

I(Γ) = I0

∣∣∣∣∣ ΓΓ0

∣∣∣∣∣
1+1/p

, (22)

where

I0 = kss
p

4(p + 1)
cB0r� (23)

is the current normalization, related to the amount of current, like
the dimensionless parameter kss. Equation (10) becomes a non-
linear second-order differential equation for the angular func-
tion F(μ):

(
1 − μ2

)
F′′(μ) + p(p + 1)F(μ) = −k2

ss
p

p + 1
F(μ)|F(μ)|2/p (24)

Fig. 2. Curve I0(p) describing the family of self-similar twisted dipoles.

where primes stand for derivatives of F(μ) with respect to μ. The
magnetic field is given by

Br = −B0

2

( r�
r

)(p+2)
F′(μ),

Bθ =
B0

2

(r�
r

)(p+2)
p

F(μ)√
1 − μ2

, (25)

Bφ = kss
B0

2

(r�
r

)(p+2) p
p + 1

F(μ)|F(μ)|1/p√
1 − μ2

·

The three components of the magnetic field have the same radial
dependence, so we are seeking for self-similar solutions. The
maximum line twist, which is the one suffered by a polar line
(Γ → 0), is called global twist, and it can be taken as the pa-
rameter that uniquely describes the l-pole family of self-similar
solutions. Due to self-similarity, Eq. (6) for Γ→ 0 becomes very
straightforward:

Δφ =
2kss

p + 1

∫ 1

0

|F(μ)|1/p
1 − μ2

dμ. (26)

Equation (24) has to be numerically solved by imposing three
physical requirements: F(1) = F(−1) = 0 (on the axis, only
the radial field component is allowed), and F′(1) = −2 (to fix
the normalization). Given a value of kss, one can find an infi-
nite number of solutions characterized by an eigenvalue p. Each
solution represents a different multipole (except the dipole for
which there are two solutions). Fixing kss = 0 (i.e., I0 = 0, no
current) implies an integer value of p, so that we recover the vac-
uum multipolar solution with F(μ) = (1 − μ2)dPp(μ)/dμ where
Pp is the pth Legendre polynomial. For each multipole, a unique
relation kss(p) (or I0(p) once the values of B0 and r� are fixed)
defines the family of solutions. In Fig. 2 we show the curve of
parameters we obtained for the twisted dipole family. Our re-
sults agree with the dipolar solutions of Thompson et al. (2002)
and the higher multipole solutions of Pavan et al. (2009). We
have used these models in the numerical code (section Sect. 3)
for testing purposes and for the sake of comparison with other
numerical solutions.

However, all these solutions are of limited generality because
they have a defined symmetry with respect to the equator, and a
linear combination of solutions for different multipoles is not a
new solution, due to the nonlinear character of the problem.
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2.4. General axisymmetric solutions

The righthand side depends on the functional form of α(Γ) and
is responsible for the coupling between different multipoles. We
have explored several possible analytical forms of α(Γ). Aiming
at more general solutions, we explore several possible analytical
forms of α(Γ) in Eq. (15). In search of semianalytical solutions,
we consider power laws of the form

α =
k
r�

(
Γ

Γ0

)q

, (27)

with k the dimensionless parameter regulating the amount of cur-
rents, and Γ0 given by Eq. (12).

Obviously the trivial choice α = 0 gives the vacuum (i.e.,
untwisted) solutions. The choice of α constant has already been
considered in Sect. 2.2. Some choices with q < 0, such as
q = −1/2, present mathematical problems and are definitely not
physical, and high values of q make the problem unsolvable with
semi-analytical methods. Therefore, only a few simple choices
may be useful because of their simplicity. An interesting case is
q = 1/2. Assuming that Γ > 0 in the domain of integration, this
particular choice leads to

Bφ =
1
3

kB0
r�

r sin θ

(
Γ

Γ0

)3/2

, (28)

and the following ODE for each radial function fl = al(r)r/r�:

d2 fl(r)
dr2

− l(l + 1)
fl(r)
r2
= −

(
k
r�

)2 ∞∑
m,n=1

fm(r) fn(r)glmn, (29)

where each dimensionless Gaunt factor glmn involves the integral
of the product of three Legendre polynomials (see Appendix B
for a detailed derivation). Numerically it is ∼O(1). Therefore,
the source term couples each multipole l with an infinite number
of multipoles m and n. One can solve the problem by truncating
the series and allowing only for a finite number of multipoles.
This approach is more general than other simple cases, but it has
many more degrees of freedom.

3. Numerical solutions

In the previous section we have discussed some analytical and
semi-analytical solutions that share the same drawback: the ar-
bitrary choice of the enclosed current function I(Γ) or, equiv-
alently, α(Γ). Some of these solutions are nonphysical, in the
sense that they can neither be extended to infinity nor matched
to vacuum solutions. All these limitations make the (semi-) an-
alytical approach insufficient for general purposes, because we
have no physical argument for preferring one particular form
of the current over another. The alternative is to find numeri-
cal solutions of the nonlinear, force-free equations describing an
NS magnetosphere. We have three main reasons for working in
this direction. First, we expect these solutions to be more gen-
eral and in some cases very different from the semi-analytical
ones. By studying new numerical equilibrium solutions, we hope
to gain insight into the form of the most realistic choices of
enclosed current functions. Second, a reliable numerical code
could in principle be extended, if adding the rotationally-induced
electric field, to build a consistent corotating magnetosphere
model from which the distribution of charge density can be com-
puted directly. Third, the ability to build magnetospheric solu-
tions for any prescribed form of the magnetic field at the surface
is very useful for future studies of the dynamics of the magneto-
sphere coupled with the physics of the crust.

3.1. The magneto-frictional method

For simplicity, we begin with the two-dimensional nonrotating
case, assuming that the force-free approximation is valid up to
an outer radius rout, which reduces the problem to finding so-
lutions of Eq. (10). In the so-called magneto-frictional method
(Yang et al. 1986; Roumeliotis et al. 1994), one begins with an
initially non-force-free configuration and defines a fictitious ve-
locity field proportional to the Lorentz force, uf = νJ × B/B2,
where J = c

4π∇ × B.ν is a normalization constant that sets the
time unit in the induction equation. Hereafter we use ν = 1. This
results in a fictitious electric field:

Ef = −uf × B. (30)

This fictitious electric field enters into the induction equation as
a frictional term that forces the solution to relax to a force-free
configuration.

In the original method, Roumeliotis et al. (1994) write the
magnetic field as

B = ∇Γ × ∇β, (31)

where Γ is the magnetic flux function defined in Eq. (3), and
β = φ− γ(r, θ), where γ(r, θ) is a scalar potential related with the
freedom in the choice of the form of the enclosed current. The
induction equation becomes a system of two advection equations
for those two functions:

∂tΓ + uf · ∇Γ = 0

∂tβ + uf · ∇β = 0. (32)

A static solution is achieved if and only if uf = 0, since the
velocity field, ∇Γ, and ∇β are all orthogonal to the magnetic
field by definition.

We apply the same idea but, instead of evolving the func-
tions Γ and β, we evolve the magnetic field components directly
by solving the induction equation

∂t B = −∇ × Ef , (33)

where the fictitious electric field can be written as

Ef = J − (J · B)B/B2, (34)

where Ef is a measure of the deviation from the force-free con-
dition, because J ‖ B is accomplished if and only if Ef ≡ 0.
The main reason for solving the induction equation instead of
Eqs. (32) is to allow for future extensions of the code by con-
sidering a real, rotationally-induced electric field. The disadvan-
tage is that we have to be more careful when setting boundary
conditions for the electric field, because we could converge to
stationary solutions characterized by ∇ × Ef = 0, which are not
necessarily force-free.

3.2. Linear analysis of the magneto-frictional method

We now consider a background, uniform magnetic field B0 and
a small perturbation δB ∝ ei(k·r−ωt). In the linear regime, the
equations read as

δJ =
c

4π
ik × δB

δEf = − 1

B2
0

[(δJ × B0) × B0] (35)

∂δB
∂t
= −iωδB = −∇ × δEf .
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Explicitly, the last equation can be written as

−i
4πω

c
δB =

k × B0

B2
0

[δB · (k × B0)] − k2δB. (36)

If the perturbed current is orthogonal to the background mag-
netic field (either longitudinal perturbations δB ‖ B0 or trans-
verse perturbations with k ‖ B0), the first term on the righthand
side of Eq. (36) vanishes and the dispersion relation is purely
dissipative:

ω = −i
c

4π
k2. (37)

Any perturbation of this type will be dissipated on a timescale
∝k−2. In contrast, for transverse perturbations with both δB
and k orthogonal to B0, the current is parallel to the back-
ground magnetic field, and the two terms in the righthand side
of Eq. (36) cancel out, so that the perturbation does not evolve
(a neutral mode with ω = 0). Therefore, the magneto-frictional
method is designed to dissipate all induced currents nonparal-
lel to the magnetic field but allows for stationary solutions with
currents parallel to the field. Since the largest lengthscale in our
problem is set by the size of the numerical domain, λmaxπrout,
the typical diffusion timescale on which we expect to converge
to a force-free solution is tdif ∝ r2

out.

3.3. The numerical method

We work in spherical coordinates (r, θ, φ) under the assumption
of axial symmetry. We employ a fully explicit finite difference
time domain (FDTD) method (Taflove & Brodwin 1975) with
a numerical grid equally spaced in θ and logarithmic in the ra-
dial direction, unless the outer radius is very close to the surface
of the star (located at r = 1), in which case we employ a lin-
early spaced radial grid. Our typical resolution varies between
30–200 points in the radial direction and 30–100 points in the
angular direction. At each node (θi, r j), we define all compo-
nents of B(i, j) and consider the three surfaces S (i, j)

n centered on
this node and normal to the unit vectors n̂ = r̂, θ̂, φ̂. The elemen-
tary areas are calculated by the following exact formulas:

S (i, j)
r =

∫ 2π

0

∫ θi+1

θi−1

r2
j sin θ dφ dθ = 2πr2

j (cos θi−1 − cos θi+1) (38)

S (i, j)
θ =

∫ 2π

0

∫ r j+1

r j−1

r sin θi dφ dr = π
(
r2

j+1 − r2
j−1

)
sin θi (39)

S (i, j)
φ =

∫ θi+1

θi−1

∫ r j+1

r j−1

r dθ dr = (θi+1 − θi−1)
(
r2

j+1 − r2
j−1

)
/2. (40)

Since the righthand side of Eq. (33) contains ∇ × Ef , it is useful
to apply Stokes’ theorem as follows. The magnetic flux across
S (i, j)

n is approximated by

Φ
(i, j)
n = B(i, j)

n S (i, j)
n , (41)

and the magnetic fluxes are advanced in time using

Φ
(i, j)
n (t + Δt) = Φ(i, j)

n (t) − Δt
∮
∂S (i, j)

n

Ef · dl, (42)

where the numerical circulation of the electric field along the
edges of the surface S n is approximated by using the values of

Ef in the middle of the edges, whose lengths are

l(i, j)r = (r j+1 − r j−1) (43)

l(i, j)θ = r j(θi+1 − θi−1) (44)

l(i, j)φ = 2πr j sin θi. (45)

Explicitly, the circulation of Ef along the edge of each sur-
face S (i, j)

n is∮
∂S (i, j)

r

E · dl = E(i+1, j)
φ l(i+1, j)

φ − E(i−1, j)
φ l(i−1, j)

φ (46)

∮
∂S (i, j)
θ

E · dl = −E(i, j+1)
φ l(i, j+1)

φ + E(i, j−1)
φ l(i, j−1)

φ (47)

∮
∂S (i, j)
φ

E · dl = E(i, j+1)
θ l(i, j+1)

θ − E(i, j−1)
θ l(i, j−1)

θ

−E(i+1, j)
r l(i+1, j)

r + E(i−1, j)
r l(i−1, j)

r . (48)

In Fig. 3 we show the location of the variables needed for the
time advance of B(i−1, j)

φ , B(i+1, j)
φ (red), and B(i, j)

φ (green).
We also make use of Stokes’ theorem to calculate the current

components at each node:

J(i, j)
n =

1

S (i, j)
n

∮
∂S (i, j)

n

B · dl.

Then, the values of J (i, j) and B(i, j) directly provide E(i, j)
f , as de-

fined by Eq. (34). For each cell (i, j) the local divergence of B is
defined as the net magnetic flux flowing across the surfaces di-
vided by the cell volume (fluxes through the toroidal surfaces S φ
cancel due to axial symmetry):

(∇ · B)(i, j) =
[
Φ

(i, j+1)
r − Φ(i, j−1)

r + Φ
(i+1, j)
θ −Φ(i−1, j)

θ

]
/V (i, j), (49)

with

V (i, j) =

∫ 2π

0

∫ θi+1

θi−1

∫ r j+1

r j−1

r2 sin θ dφ dθ dr

=
2π
3

(cos θi−1 − cos θi+1)
(
r3

j+1 − r3
j−1

)
. (50)

The numerical method ensures that the local divergence is con-
served to machine accuracy by construction. As a matter of fact,
Eqs. (42) and (49) imply

d(∇ · B)(i, j)

dt
=

[
−

∮
∂S (i, j+1)

r

E · dl +
∮
∂S (i, j−1)

r

E · dl

−
∮
∂S (i+1, j)
θ

E · dl +
∮
∂S (i−1, j)
θ

E · dl

⎤⎥⎥⎥⎥⎦ . (51)

According to Eq. (46), the last equation is written as a sum
of toroidal elements Eφlφ. They are evaluated twice at each of
the four surrounding edges (with center θi±1, r j±1), with oppo-
site sign, so they cancel exactly. Therefore, provided there is an
initial divergence-less field, it is guaranteed that the numerical
divergence defined by Eq. (49) remains zero to round-off level at
each time step.

We must mention that we also tried a method with a stag-
gered grid (Yee 1966), in which each n-component of the mag-
netic field is defined only at the center of the normal surface,
S (i, j)

n , while the electric field components are defined in the mid-
dle of its delimiting edges. Methods based on staggered grid are
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Fig. 3. Location of the variables in the numerical grid.

well-suited to solving Maxwell’s equations, because it provides
a natural way to time-advance one field by means of the circu-
lation of the other one. However, we are not dealing with the
true Maxwell’s equations, but rather with an artificial electric
field, Eq. (34). Evaluating the dot product J · B requires the in-
terpolation between two or four values of several of the six mu-
tually displaced components. Considering the red components
in Fig. 3, for instance, the calculation of E(i+1, j)

r also requires
B(i+1, j)
φ , which would be not defined at that location. The un-

avoidable interpolation errors prevent the code from completely
relax to Ef = 0, except in the trivial case of untwisted configura-
tions. For this reason, we decided to work with a standard grid.

3.4. Boundary conditions

At the polar axis, we impose the vanishing of all angular com-
ponents of magnetic field and currents: Bθ = Bφ = Jθ = Jφ =
Eθ = Eφ = 0. At the surface, we have to fix the magnetic field
components as provided by some interior solution. However, an
arbitrary choice of poloidal and toroidal fields may not be com-
patible with a force-free solution. We decided to impose Ef = 0,
at the surface, which is equivalent to keeping the value of the
radial component fixed at the surface, Br(1, θ) and therefore to
fixing the angular dependence of the magnetic flux function,
Γ(1, θ). As a consequence, Bθ and Bφ are allowed to vary on the
first radial grid point.

The external boundary is set at r = rout. We have explored
two different boundary conditions: Ef (r ≥ rout) = 0 and the con-
tinuous matching to external vacuum solutions. The first choice
is equivalent to fix the radial component Br(rout, θ), while allow-
ing for Bθ and Bφ to evolve. Coupling to vacuum solutions can
be done using the spectral Legendre decomposition of the ra-
dial field at the outer surface, or more precisely, of the magnetic
flux function, in terms of which the vacuum boundary condi-
tion for each multipole is easily imposed (e.g., as in Pons &
Geppert 2007). Then we can reconstruct the angular dependence
of Bθ(rout, θ). The vacuum region is characterized by Bφ = 0
and the absence of currents or fictitious electric fields. This im-
plies that a current sheet Jθ(rout) � 0 is needed to ensure current
conservation.

If we choose Ef = 0 as outer boundary condition, the
code can actually converge to Ef ≡ 0 at a round-off level, be-
cause mathematically this is the only solution compatible with
∇ × Ef = 0. The price to pay is a forced matching of the inner
solution with a fixed value of Br(rout). In contrast, if we cou-
ple with vacuum, there is no guarantee that the final solution is
Ef = 0 everywhere. We discuss below the influence of the dif-
ferent boundary conditions on the results.

3.5. Convergence criterion and tests

Since the magneto-frictional method is based on introducing an
artificial, viscous electric field that drives an arbitrary initial con-
figuration into a force-free state, we need a convergence criterion
to decide when our solutions are acceptable. For that purpose, we
keep track during the run of the following quantities:

– Volume-integrated magnetic energy (total and contribution
from the toroidal field)

Eb =

∫
B2

2
dV, Ebφ =

∫ B2
φ

2
dV.

– Volume-integrated energy stored in the fictitious electric
field

Ee =

∫
E2

f

2
dV.

– Total volume-integrated helicity

H ≡
∫

V
BφAφdV

(see Appendix A for a discussion about this definition).
– Volume-integrated absolute value of the divergence of both,

B and J . These two quantities are expected to vanish at
round-off level by construction.

– An average throughout the entire magnetosphere volume of
the local angle between current and magnetic field2

sin2 η̄ =

∑
J2 sin2 η∑

J2
=

∑
E · J∑

J2
(52)

where the sum is performed over each node (i, j).
– A last important cross-check is the consistency of the func-

tions I(Γ) and α(Γ). First, we check that, for each n-
component, the three functions αn(r, θ) = 4πJn/cBn(r, θ) are
the same. Second, at each radius or angle, the relation (9) has
to be satisfied.

Hereafter, we show the electromagnetic quantities in units of B0,
r�, c, so the magnetic field B scales with B0, the current den-
sity J with cB0/r�, the enclosed current I with cB0r�, and the
magnetic flux function Γ with Γ0 = B0r2

�/2. To test our code
and to fix our convergence criteria for the realistic models, we
performed a battery of tests. In the first basic test we considered
the analytical vacuum dipole with Aφ = B0 sin θ/2r2, Bφ = 0
and checked the ability of the code to maintain this solution.
Due to the discretization errors, a little numerical toroidal cur-
rent appears, and consequently a nonvanishing toroidal fictitious
electric field. These errors are small (ΔEb/Eb � 1%), but it is

2 This average weighted with J2 avoids numerical problems in regions
where the numerical value of the current is very low and the angle
sin2 η = E · J/J2 is numerically ill-defined.
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Fig. 4. Influence of the outer boundary condition and the location of the external boundary on the evolution of the ratio Ee/Ebφ (left) and η̄ (right).

Table 1. Time needed to dissipate the numerical currents of the vacuum
dipole.

rout nr nθ tdis

5 30 30 41
5 50 100 35
10 30 30 183
10 50 30 162
100 50 30 180 × 102

interesting to see how long it takes to dissipate the perturbation
to obtain Ee = 0 to machine accuracy. In Table 1 we show the
results with different resolutions and values of outer radius, al-
ways keeping the timestep close to the maximum value allowed
by the Courant condition. The expected behavior tdis ∼ r2

out is
obtained, with the constant of proportionality depending on the
grid resolution, which affects the strength of the initial numerical
current.

The second, less trivial test is provided by the analytical
models discussed above: the Bessel and self-similar solutions
(Sects. 2.2, 2.3). Again we began with an initial model consist-
ing of a known solution, and let the system dissipate the currents
that come from discretization errors. To obtain the initial models,
the self-similar solutions require the numerical resolution of the
nonlinear ODE (24), while the analytical Bessel solutions are di-
rectly implemented. We tried different parameters for the Bessel
solutions (varying k) and self-similar models (varying the mul-
tipole index and the global twist). For every model tested with
analytical solutions, we observe a very slight numerical read-
justment of the configuration and the code rapidly reaches the
relaxed state, with relative changes in Eb, Ebφ,H less than ∼1%.
We had to pay special attention to work with sufficient radial res-
olution in the case of highly twisted Bessel models k � 1, due to
their oscillatory radial dependence. For low resolution, the code
may find, after a large scale reconfiguration, a completely differ-
ent solution with smaller k, which is numerically more stable. If
the resolution is high enough, all analytical solutions are found
to be stable.

We have also studied the evolution of vacuum dipolar solu-
tions with an additional toroidal field for different values of rout.
In this case the initial currents are due not only to discretiza-
tion errors, but also to an inconsistency in the initial model.
Moreover, the mean angle defined in Eq. (52) initially has a fi-
nite value η̄in. In Fig. 4 we show how some convergence mon-
itors evolve as a function of time for three cases with an initial

toroidal field of the form Bφ = 0.1B0 sin θ/r3 (η̄in = 15.1◦), but
different external boundary conditions: matching with vacuum
at rout = 10 or imposing Ef = 0 at rout = 10 or 100. For compar-
ison, we also show results for two analytical solutions: a Bessel
solution and a twisted self-similar model with the same helicity.

Finally, we tested a vacuum dipole perturbed by a weak
toroidal field. This is a case of physical interest for quasi pe-
riodic oscillations of magnetars, as discussed in Timokhin et al.
(2008) and Gabler et al. (2011). Given a background poloidal
field described by Γ, we chose an arbitrary functional form I(Γ)
and built the toroidal field according to Eq. (5). As expected,
the perturbed configuration is stable and the stationary solu-
tion is rapidly reached after a small readjustment. Typically,
for max(Bφ) = 0.1 B0, we have η̄in ∼ O(1◦) and changes
ΔB/B ∼ 1%.

In general, the magnetic energy is not conserved, since the
system has to dissipate part of the current to reach a force-free
configuration. This effect is more evident for initial configu-
rations with high helicity. When the outer boundary condition
Ef = 0 is imposed, the helicity is conserved within a few percent,
as expected (see Appendix A for the helicity conservation the-
orem), and both electric field and mean angle eventually vanish
(to machine accuracy). However, when rout is large, or when vac-
uum boundary conditions are imposed, configurations with high
initial helicity take a much longer time to relax (see Fig. 4). In
all cases, the relaxation process is faster near the surface, where
the configuration of the magnetosphere is more important for our
purposes.

On the basis of these results, our convergence criteria for
accepting that a configuration has reached a force-free state are
hereafterEe/Ebφ < 10−8 and η̄ < 10−3◦, plus the requirement that
both quantities are monotonically decreasing with time. Some
short, initial relaxation phase, in which some large-scale recon-
figuration occurs is possible. We chose to compare the electric
energy to the magnetic energy contribution from the toroidal
field, which is much more restrictive than simply the ratio of
electric to magnetic energy, especially for low helicity.

4. Results

With the numerical code described above, we can obtain
very general solutions of force-free, twisted magnetospheres.
We discuss separately the influence of the following relevant
parameters:

– the location of the outer radius rout in combination with the
external boundary condition;
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Fig. 5. Current density distribution J near the surface for solutions obtained with the same initial data and boundary conditions, Ef = 0, but varying
rout = 5, 10, 50, 100 (left to right).

– angular and radial dependence of the initial toroidal field;
– initial twist and helicity, fixed by the functional form and the

strength of the initial toroidal field;
– the geometry of the initial poloidal field.

In Fig. 5 we compare the distribution of currents in a solution
obtained by imposing Ef = 0 at rout = 5, 10, 50, or 100. In
all cases the initial poloidal component is a vacuum dipole so-
lution with Aφ = B0 sin θ/r2 and a toroidal field of the form
Bφ = 0.1B0 sin θ/r3. We observe that, near the axis, the solutions
are clearly affected by the location of the external boundary, if
it is not far enough from the surface (rout � 10). In such a case,
the influence of the external boundary is important, and it intro-
duces artificial features, although the current distribution in the
equatorial region is similar in all cases. The final configurations
become almost indistinguishable when rout = 50 or 100. Taking
rout >∼ 100, we ensure that the numerical noise caused by the in-
teraction with the external boundary is negligible. By neglecting
the contribution from the open field lines, for which the twist is
ill-defined, the global amount of twist is similar in all models
(∼1.2 rad).

The function I(Γ) for the same four cases is shown in Fig. 6,
together with two more cases corresponding to rout = 5 and
rout = 100 but replacing the external boundary condition Ef = 0
by a smooth matching with vacuum solutions. The use of a dif-
ferent boundary condition affects the final solution only for low
values of rout. Matching with external vacuum implies that no
currents can flow through the boundary, so that I(Γ) = α(Γ) = 0
along every field line crossing the outer boundary. As a conse-
quence, a force-free configuration, coupled with a vacuum, will
be characterized by a plateaux I(Γ) = 0 for Γ < Γc, with Γc label-
ing the first closed field line. This means that a bundle of open
field lines is potential. The fraction of open field lines (the length
of the plateaux for low Γ) is large only for low values of rout.
For Γ > 0.2 (equatorial region), all curves coincide. Increasing
rout > 100 further has no visible effect on the models with this
helicity. For models with higher helicity, the interaction with the
boundary becomes more important, and rout needs to be accord-
ingly increased to minimize the boundary effects.

The next step is to explore the influence of the strength and
form of the initial toroidal field. Table 2 summarizes the param-
eters of the initial models employed and the initial mean angle
between B and J , Eq. (52). Models A-F are obtained starting
from a dipolar poloidal component with strength at pole B0 and
a toroidal component given by the general form

Bin
φ = ktorB0 gin(r) fin(θ). (53)

Fig. 6. Enclosed current I(Γ) for different boundary conditions (Ef = 0
or coupled with vacuum) at rout = 5, 10, 50, or 100.

The angular part is chosen to be of the form fin(θ) = sind θ, with
d being a positive integer. The radial dependence of models A to
E is a power law, gin(r) = r−s, while in model F we use a rapidly
decaying function:

gin(r) = r−3e−[(r−1)/0.5]2
. (54)

The initial configuration of model G is asymmetric with respect
to the equator: it is a superposition of dipolar and quadrupolar
poloidal components plus a toroidal component, as follows:

Aφ =
B0

2
sin θ
r2
+

B0

2
sin θ cos θ

r3
, (55)

Bφ = 0.1B0
sin θ
r3
·

We fix rout = 100 and the external boundary condition to
Ef (rout) = 0 for all models, except for model C (highest he-
licity), where rout = 500 to reduce the influence of boundary, as
discussed before.
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Table 2. Parameters defining the initial toroidal field, as indicated in
Eq. (53).

Model ktor gin(r) Fin(θ) η̄in [deg]
A 0.010 r−3 sin θ 13.8
B 0.100 r−3 sin θ 15.1
C 0.500 r−3 sin θ 29.9
D 0.115 r−3 sin2 θ 10.7
E 0.230 r−5 sin2 θ 25.1
F 0.234 r−3e−[(r−1)/0.5]2

sin2 θ 23.3
G 0.113 r−3 sin2 θ 34.2

Table 3. Comparison between two self-similar solutions (S1-S2) and
our numerical solutions (A-G).

Model H Δφmax max(J) I0 p
[B2

0r3
�] [rad] [cB0/r�] [cB0r�]

S1 0.21 0.5 1.8 × 10−2 0.061 0.97
S2 1.11 1.6 8.1 × 10−2 0.15 0.69
A 0.021 0.12 1.2 × 10−3 0.0050 1.45
B 0.21 1.2 1.2 × 10−2 0.049 1.40
C 1.11 6.5 4.8 × 10−2 . . . . . .

D 0.21 0.7 1.5 × 10−2 0.056 1.14
E 0.21 0.4 4.2 × 10−2 0.106 0.50
F 0.21 0.4 4.3 × 10−2 . . . . . .

G 0.21 0.3 2.0 × 10−2 0.038 2.22

Table 3 shows the features of our final configurations: he-
licity, maximum line twist, maximum value of current den-
sity, and parameters of I(Γ) = I0(Γ/Γ0)1+1/p. We also include
(model S1 and S2) two self-similar solutions (Sect. 2.3) of sim-
ilar helicity, where all components have the same radial depen-
dence Bi ∼ r−(p+2). In this case the current function is analytical,
I = I0(Γ/Γ0)1+1/p with (p, I0) belonging to the family of solu-
tions in Fig. 2. In the other cases I0 and p are obtained with fits
to the numerical function.

The final geometry of the magnetic field and currents for all
these models is shown in Figs. 7 to 14. For ktor � 0.1 (mod-
els A and B), the initial poloidal field remains almost unal-
tered, and the behavior of the solutions is nearly linear. Toroidal
field strength, helicity, current density J, enclosed current func-
tion I(Γ), and global twist scale linearly with ktor. In contrast, for
ktor � 0.1, the high initial helicity results in a larger twist angle,
up to several radians, which in turn corresponds to a highly de-
formed poloidal field. A direct comparison of models A, B and
C, which differ from each other only in the strength of the initial
toroidal component, illustrates this effect: models A and B have
the same shape with just a different scale factor, but model C is
qualitatively different.

The general features in the low ktor models do not differ
much from self-similar solutions, because the initial conditions
were close to a slightly twisted dipole. In self-similar models,
two features are the absence of radial currents on the axis and
a higher concentration of currents around the equatorial plane.
Conversely, in our models, currents are spread more over the an-
gular direction, and we allow for the existence of radial current
on the axis. As a consequence, comparing numerical solutions
A and B with self-similar models with comparable helicity, the
former reaches lower maximum values of current density with
a higher global twist. We also note that in the most extreme
case (model C) the angular dependence of the toroidal field and

radial currents becomes steeper3. It is also interesting to compare
models C and S2 (Figs. 10 and 7). Both have a similar helicity,
but the global twist is higher in model C, while the maximum
current density is higher in model S2.

Comparing models B and D, which only differ in the angular
dependence of the initial data and the normalization (fixed to ob-
tain the same helicity), we find that the converged solutions are
very similar, except near the axis where model D has no radial
currents. The effect of varying the initial radial dependence can
be estimated by comparing model D to model E. It seems that
in this case the final solution keeps memory of the initial model:
the converged solution shows a toroidal field that decreases with
distance faster in the model E than in model D.

In model E a tiny toroidal field (note the color scale in the
figures) appears near the axis. This is likely a numerical artifact
that can be partly ascribed to the (narrow) bundle of lines that
depart from polar region and interact with the outer boundary.
As a matter of fact, these structures are stronger for low values
of rout, as already shown in Fig. 5. Moreover, the numerical dis-
sipation of the current is slower near the axis and longer runs are
needed to reach more restrictive convergence criteria.

The different radial dependences of the magnetic field com-
ponents in models B, E and F, together with S1, are shown in
Fig. 15. The self-similar solution has the same radial dependence
r−(p+2) for the three components, but in the numerical solutions
the toroidal field can decrease faster (model E and F) or slower
(model B) than the poloidal components. Furthermore, the radial
behavior may depend on the magnetic colatitude θ, too. In addi-
tion, the radial dependence of the poloidal components is close
to the power law r−3 when the twist is low, but it may signifi-
cantly deviate from a power law for the more complex models.
The departure from self-similar solutions is likely to have a vis-
ible effect on the observed spectrum, as discussed in more detail
in the next section.

A different solution that can only be found numerically is
model G, the asymmetric configuration. Most of the current den-
sity is concentrated at a high latitude θm.

An interesting case (not shown) consists of an initial model
with toroidal and poloidal fields of opposite parity (e.g., a dipolar
poloidal field plus a quadrupolar toroidal field). In this case, the
total initial helicity is zero and, since this is a conserved quantity,
the current is dissipated and a potential solution is found by the
numerical code. This is consistent with the fact that the numer-
ical evolution converges towards the most trivial solution with
the same helicity.

Finally, to better understand the differences among models,
a comparison between the enclosed current function I(Γ) is very
helpful, as shown in Fig. 16. In principle, if we know this func-
tion or an approximation fits the results of numerical simula-
tions, the pulsar equation (Eq. (7)) can be solved and the mag-
netospheric structure can be determined. In our models A, B, D,
E, G, the current I(Γ) is monotonic and can be well fitted by a
single power law I0(Γ/Γ0)1+1/p, but the values obtained for the
parameter p are not consistent with the value of I0 describing the
self-similar family of solutions (Fig. 2), as expected. As a matter
of fact, for models A, B, D, the values of p are greater than 1
(the self-similar dipolar family is described by p ∈ [0, 1]). In
contrast, model E lies quite close to the self-similar solution. The
enclosed current of models C and E varies more rapidly, describ-
ing the concentration of currents in a smaller angular region. For

3 In some cases it approaches the formation of a current sheet near the
equatorial plane, and this introduces numerical noise that does not allow
reaching a smooth solution or calculating the twist angle accurately.
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Fig. 7. Self-similar model S2. From left to right: poloidal magnetic field lines (white) and strength of the toroidal component (colored logarithmic
scale); current density distribution J in the near region (r ≤ 5) (colored linear scale); angular profiles of the magnetic field components close to
the star surface, and angular profiles of the current density.

Fig. 8. Same as Fig. 7 for model A.

Fig. 9. Same as Fig. 7 for model B.

Fig. 10. Same as Fig. 7 for model C.
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Fig. 11. Same as Fig. 7 for model D.

Fig. 12. Same as Fig. 7 for model E.

Fig. 13. Same as Fig. 7 for model F.

Fig. 14. Same as Fig. 7 for model G.
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Fig. 15. Radial profiles of the magnetic field components for models S1,
B (top), E and F (bottom). We show Br on the axis and Bθ, Bφ at the
equator for r ∈ [1, 30].

some models, a power-law fit to I(Γ) simply does not work. In
model G, even if the symmetry with respect to the equatorial
plane is broken, the resulting enclosed current I(Γ) is not very
different from models A, B, D, and S1 (after rescaling accord-
ingly to the factor ktor). The difference is the mapping between
Γ and the surface footprints. In all symmetric models, the maxi-
mum magnetic flux (proportional to Γ) is located at the equator,
while it corresponds to θm � π/2 for model G. Depending on the
viewing angle, this has a strong imprint on the processed spectra.

4.1. Resonant optical depth

A prime candidate mechanism for generating the hard tail com-
ponent observed in magnetar X-ray spectra is the resonant
Compton upscattering of photons in an external magnetic field.
We denote the cyclotron frequency by ωB = ZeB/mc, where Ze
and m are the charge and mass of the particle. For electrons, this
corresponds to an energy �ωB = 11.6(B/1012 G) keV. In the X-
ray band, the plasma frequency is much lower than the photon
frequency, thus taking the polarization vector orthogonal to the
propagation direction k̂ (semitransverse approximation) works
well (see Canuto et al. 1971; and Ventura 1979). The normal
modes of propagation are in general elliptically polarized and the
degree of ellipticity depends on the ratio ω/ωB and θkB, defined
as the the angle between k̂ and B. It is common to introduce
the ordinary (O) and extraordinary (X) modes. In the limit of

Fig. 16. I(Γ) for different models. The curve of model A is magnified
by a factor of 10.

propagation perpendicular to the magnetic field (θkB = π/2), the
modes are linearly polarized, with the polarization vector paral-
lel (O-mode) or orthogonal (X-mode) to B. For parallel propa-
gation (θkB = 0), we recover the circularly polarized modes.

The cross section of O and E modes depends in a nontriv-
ial way on θkB, and on the ratio ω/ωB. The cross section of the
O-mode is close to the Thomson cross section σT for θkB near
to π/2, it scales with sin2 θkB if ω � ωB, and it does not depend
dramatically on the frequency. Conversely, for low photon ener-
gies �ω� �ωB, the cross section of the X-mode is strongly sup-
pressed due to the reduced mobility of charged particles across
magnetic field lines. Moreover, at photon frequency ω = ωB,
the X-mode becomes resonant (Ventura 1979). If we neglect the
thermal velocity of the particles (cold plasma approximation)
and the natural width of resonance due to the radiation-damping
force, the resonant cross section can be approximated by a delta
function:

σres = π
2
(
1 + cos2 θkB

) (Ze)2

mc
δ(ω − ωB) (56)

where the factor (1 + cos2 θkB) arises from the assumption of
unpolarized light. The first attempts to consider this process
quantitatively in magnetars are presented by Lyutikov & Gavriil
(2006). They study a simplified, semi-analytical 1D model by
assuming that seed photons are radially emitted from the NS sur-
face with a blackbody spectrum (BB) and the resonant Compton
scattering occurs in a thin, plane parallel magnetospheric slab.
By assuming a bulk velocity of electrons, but neglecting all ef-
fects of their recoil (Thomson limit �ωB � mec2/γ, where γ
is the Lorentz factor of electrons), it can be estimated how a
BB spectra is affected. Lyutikov & Gavriil (2006) find an av-
erage upscattering for the transmitted radiation (forward scat-
tered photons), while the mean energy of the reflected radia-
tion remains the same. Later, Nobili et al. (2008a,b) predicted
spectra obtained via a new 3D Monte Carlo code, accounting
for polarization, QED effects, and relativistic cross sections.
Although including our magnetospheric models in such sophisti-
cated Monte Carlo simulations is beyond the scope of this paper,
we can estimate some of the possible effects by looking at the
behavior of relevant quantities.
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Fig. 17. Estimated resonant optical depth (multiplied by the microphysical factor κ) for radial photons as a function of the polar angle θ. We show
results for models S1, A, B, C (first row), D, E, F, G (second row) for different photon energies as indicated in the legend. We set B0 = 1013 G.

In particular, we can estimate the resonant optical depth,
given by the integration of Eq. (56) along a given line of sight of
constant θ (Lyutikov & Gavriil 2006):

τres(θ) = π2nZZe
(
1 + cos2 θkB

) ∣∣∣∣∣dB
dr

∣∣∣∣∣
−1

(57)

where nZ is the density of scatterer particles, and all the quanti-
ties are evaluated at the resonant radius rres. As the latter depends
on the photon energy, the energy dependence of the optical depth
is given basically by the local ratio (1+cos2 θkB)nZ/|dB/dr| (pro-
vided that rres lies above the star surface). If we assume charge
separation, the particle density is proportional to the current den-
sity, J = κcnZZe. The dimensionless factor κ depends locally on
the plasma composition and on the (bulk and/or thermal) veloc-
ity of the particles. Following Thompson et al. (2002) and Nobili
et al. (2008a), we can (very roughly) estimate the optical depth
along a line of sight (assuming κ constant along it), and consid-
ering only radially directed photons:

κτres(θ) = π2 J
c

(
1 +

B2
r

B2

) ∣∣∣∣∣dB
dr

∣∣∣∣∣
−1

· (58)

If we consider self-similar magnetosphere models under these
naive assumptions, the optical depth becomes independent of
rres, hence, independent of where the scattering happens. This
is because the local ratio (1 + cos2 θkB)J/|dB/dr| is the same
for each angle, since for every component i, Bi ∝ r−p+2, and

Ji ∝ r−p+3. Furthermore, the optical depth does not depend on
the normalization of the magnetic field, B0.

In contrast, the optical depth in our numerical models de-
pends on the photon energy, because the components of J and B
cannot be described by the same power law. In Fig. 17 we show
the estimated resonant optical depth, Eq. (58), for our models,
compared with the self-similar model S1. We plot κτres as a func-
tion of the polar angle θ, for different energies of the seed pho-
tons, �ω = 0.5, 1, 2, 4, 8 keV, taking B0 = 1013 G. If the mag-
netic field is predominantly poloidal (low helicity), the optical
depth is roughly given by the ratio between toroidal field (which
provides poloidal current) and poloidal field at the resonant ra-
dius. Increasing the photon energy, the resonant radius will be
closer to the surface, modifying the estimate of J and dB/dr
which are involved in Eq. (58). Thus, if the toroidal field decays
slower than the poloidal component, a higher photon energy im-
plies a lower ratio J/|dB/dr| at the resonant radius. Looking at
the radial profiles (Fig. 15), we can understand why the optical
depth increases with the photon energy for models E and F, while
for other models the optical depth is greater for soft photons. A
more precise prediction of how the spectrum is modified when
using one or another magnetosphere model requires more elab-
orated calculations than those presented here. We also point out
that, due to the linear relation between B and ωB, increasing the
energy is equivalent to decreasing the normalization B0 by the
same factor.
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5. Conclusions

The study of force-free magnetosphere models from an analyt-
ical or semi-analytical point of view have led to remarkable re-
sults in a few cases. In the literature, the twisted configurations
usually implemented in the modeling of synthetic spectra are
often based on the self-similar solutions by Thompson et al.
(2002), which are restricted to a twisted dipole or to a single
higher multipole (Pavan et al. 2009). Since semi-analytical stud-
ies of a general combination of multipoles are more difficult due
to the nonlinear character of the equations, we faced the prob-
lem by constructing and thoroughly testing a numerical code that
relaxes an arbitrary initial model to a force-free solution with
given boundary conditions. With our numerical simulations we
can find general solutions of twisted magnetospheres with com-
plex geometries. Our only input is the radial field at the surface,
which can be completely general (i.e., provided by numerical
simulations of the internal evolution).

Our main conclusion is that the possible family of relaxed
configurations depends on the initial data. As already pointed out
by Contopoulos et al. (2011) in a different context, the solution
is not unique, given the surface radial magnetic field and the
outer boundary conditions. This reflects the freedom we have in
choosing the enclosed current function I(Γ), for a given Γ(θ) at
the surface. Starting with two different configurations with the
same value of volume-integrated helicity does not necessarily
lead to the same final configuration. Thus we were able to find
a variety of solutions, which can be qualitatively different from
the self-similar models.

Some of the new magnetosphere models that we found are
characterized by a high degree of nonlinearity, twists up to a few
radians, and a nontrivial functional form of the threading cur-
rent I(Γ). These models establish a new basis for generalizing
the study of radiation transfer in neutron star magnetospheres, as
already extensively done with the self-similar models (Rea et al.
2008; Fernández & Thompson 2007; Zane et al. 2009). In partic-
ular, our approach provides a more general framework for study-
ing how the geometry of the magnetic field and currents affects
the output X-ray spectrum of a magnetar. If resonant Compton
scattering is a crucial ingredient in forming the spectra, relaxing
the self-similarity constraint in the models may have a signifi-
cant effect, as our preliminary estimates of optical depths have
shown. This opens the possibility of implementing alternative
models in simulations of radiative transfer. In the future we aim
at providing spectra to be compared with observations.
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Appendix A: Magnetic helicity

For a given magnetic field configuration, the usual definition of
magnetic helicity

H ≡
∫

(A · B)dV (A.1)

is not unique due to the gauge freedom in the vector poten-
tial, A → A + ∇Ψ, where Ψ is a scalar function. However, in
axial symmetry (no φ-dependence), the following definition of
helicity

H ≡
∫

AφBφdV (A.2)

is gauge-independent because H → H + ∫
Bφ∇φΨ = H . We

have employed this definition of helicity in numerical code. It
can also be shown that this quantity is conserved during the evo-
lution. Taking the time derivative (denoted by ∂t) and using the
induction equation, we have

∂tH =
∫

Aφ(∂tBφ)dV +
∫

(∂tAφ)BφdV

= −
∫

Aφφ̂ · (∇ × E)dV −
∫

EφBφdV

=

∫ [
∇ · (Aφφ̂ × E) − E · ∇ × (Aφφ̂)

]
dV −

∫
EφBφdV

=

∮
∂V

(Aφφ̂ × E) · dS −
∫

(E · B)dV. (A.3)

If the poloidal electric field vanishes at the boundaries, the total
helicity is conserved.

With the definition (A.2), the explicit expression of the mag-
netic helicity for self-similar models (Sect. 2.3) is

H = π
4

B2
0

k
p + 1

∫
F(μ)2+1/p

1 − μ2
dμ, (A.4)

and for a dipolar Bessel model (Sect. 2.2) we have

H =
∫

V
kB2

0Y1(x)2 sin2 θdV =
4
3

kB2
0

∫ ∞

k
Y1(x)2dx. (A.5)

Appendix B: A nontrivial semi-analytical
configuration

Here we show the derivation of Eq. (29) in Sect. 2.4. Substituting
α = k

r�
|Γ/Γ0|1/2 in Eq. (15), with Γ given by Eq. (11), leads to

l(l + 1)
2l + 1

[
d2(ral(r))

dr2
− l(l + 1)

al(r)
r

]
=

−k2

3
1
r�

∫ 1

−1

dPl(μ)
dμ

(
Γ

Γ0

)2

sgn(Γ)dμ. (B.1)

The integral at the righthand side can be written as

I = 1

Γ2
0

∫ 1

−1

dPl(μ)
dμ
Γ2sgn(Γ)dμ =

1

Γ2
0

[Γ2sgn(Γ)Pl(μ)]1
−1

− 2

Γ2
0

[∫ 1

−1
Γ

dΓ
dμ

sgn(Γ)Pl(μ)dμ +
∫ 1

−1
Γ2δ(Γ)

dΓ
dμ

Pl(μ)dμ

]
,

where the third term comes from sgn′(x) = 2δ(x). The first and
third terms in this equation are zero. Next, we assume by sim-
plicity that Γ ≥ 0 in the whole domain, so that sgn(Γ) ≡ 1, and
we define the dimensionless radial functions fm(r) = am(r)r/r�.
Hereafter we drop the dependences on μ, r, and the integration
limits for conciseness. Using the Legendre equation we obtain
from Eq. (11)

dΓ
dμ
= −Γ0

∑
n

n(n + 1) fnPn, (B.2)

and we can express the integral I in a more compact form

I = 2
∞∑

n=1

n(n + 1) fn
∞∑

m=1

fm

∫ (
1 − μ2

)
Pl

dPm

dμ
Pn = (B.3)

=

∞∑
m,n=1

2m(m + 1)
2m + 1

n(n + 1) fm fn

[∫
PlPm−1Pn −

∫
PlPm+1Pn

]
,
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where we have also used the recurrence relations between
Legendre polynomials. Finally, the ODE (15) for each fl(r) is

d2 fl
dr2
− l(l + 1)

fl
r2
= −

(
k
r�

)2 ∞∑
m,n=1

fm fnglmn, (B.4)

where

glmn =
2
3

2l + 1
2m + 1

m(m + 1)
l(l + 1)

n(n + 1)

×
[∫

PlPm−1Pn −
∫

PlPm+1Pn

]
.

The integral of the product of three Legendre polynomials can
be expressed by Wigner 3 − j symbols:

∫
PaPbPc =

(
a b c
0 0 0

)2

. (B.5)

Alternatively, we can express the factors above in terms of asso-
ciated Legendre polynomials:

glmn =
2
3

n(n + 1)
l(l + 1)

[∫
P1

l+1P1
mP0

n −
∫

P1
l−1P1

mP0
n

]
. (B.6)

These integrals can be evaluated analytically using Gaunt’s for-
mula (Gaunt 1930)

I3 =

∫
Pu

aPvbPwc

= 2 (−)(s−b−w) (b + v)!(c + w)!(2s − 2c)!s!
(b − v)!(s − a)!(s − b)!(s − c)!(2s + 1)!

×
q∑

t=p

(−)t (a + u + t)!(b + c − u − t)!
t!(a − u − t)!(b − c + u + t)!(c − w − t)!

(B.7)

s =
a + b + c

2
p = max[0, c − b − u]

q = min[b + c − u, a − u, c − w].

The integral I3 is non-zero if and only if both the following
relations are satisfied:

– b − c ≤ a ≤ b + c, a triangular condition;
– a + b + c is even.

For each fixed l in Eq. (B.6), the conditions above are satisfied
for an infinite number of pairs (m, n), with glmn having numerical
values of ∼O(1). Thus Eq. (B.4) couples each l-multipole with
an infinite number of other multipoles.

It should be noted that this is valid only if Γ ≥ 0 in its whole
domain (r, μ) ∈ [1, rmax] × [−1, 1], otherwise we cannot use the
formulas above (Eqs. (B.5), (B.7)). A non positive Γwould make
the calculation of these factors much harder.
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