1,405 research outputs found
Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation
Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei
A Novel Use of Light Guides and Wavelength Shifting Plates for the Detection of Scintillation Photons in Large Liquid Argon Detectors
Scintillation light generated as charged particles traverse large liquid
argon detectors adds valuable information to studies of weakly-interacting
particles. This paper uses both laboratory measurements and cosmic ray data
from the Blanche dewar facility at Fermilab to characterize the efficiency of
the photon detector technology developed at Indiana University for the single
phase far detector of DUNE. The efficiency of this technology was found to be
0.48% at the readout end when the detector components were characterized with
laboratory measurements. A second determination of the efficiency using cosmic
ray tracks is in reasonable agreement with the laboratory determination. The
agreement of these two efficiency determinations supports the result that
minimum ionizing muons generate photons/MeV as
they cross the LAr volume.Comment: Accepted version (without final editorial corrections
Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya
Background: Respiratory syncytial virus (RSV) reinfects individuals repeatedly. The extent to which this is a consequence of RSV antigenic diversity is unclear.
Methods: Six-hundred thirty-five children from rural Kenya were closely monitored for RSV infection from birth through 3 consecutive RSV epidemics. RSV infections were identified by immunofluorescence testing of nasal washing samples collected during acute respiratory illnesses, typed into group A and B, and sequenced in the attachment (G) protein. A positive sample separated from a previous positive by ≥14 days was defined as a reinfection a priori.
Results: Phylogenetic analysis was undertaken for 325 (80%) of 409 identified infections, including 53 (64%) of 83 reinfections. Heterologous group reinfections were observed in 28 episodes, and homologous group reinfections were observed in 25 episodes; 10 involved homologous genotypes, 5 showed no amino acid changes, and 3 were separated by 21–24 days and were potentially persistent infections. The temporal distribution of genotypes among reinfections did not differ from that of single infections.
Conclusions: The vast majority of infection and reinfection pairs differed by group, genotype, or G amino acid sequence (ie, comprised distinct viruses). The extent to which this is a consequence of immune memory of infection history or prevalent diversity remains unclear
Time Domain Explorations With Digital Sky Surveys
One of the new frontiers of astronomical research is the exploration of time
variability on the sky at different wavelengths and flux levels. We have
carried out a pilot project using DPOSS data to study strong variables and
transients, and are now extending it to the new Palomar-QUEST synoptic sky
survey. We report on our early findings and outline the methodology to be
implemented in preparation for a real-time transient detection pipeline. In
addition to large numbers of known types of highly variable sources (e.g., SNe,
CVs, OVV QSOs, etc.), we expect to find numerous transients whose nature may be
established by a rapid follow-up. Whereas we will make all detected variables
publicly available through the web, we anticipate that email alerts would be
issued in the real time for a subset of events deemed to be the most
interesting. This real-time process entails many challenges, in an effort to
maintain a high completeness while keeping the contamination low. We will
utilize distributed Grid services developed by the GRIST project, and implement
a variety of advanced statistical and machine learning techniques.Comment: 5 pages, 2 postscript figures, uses adassconf.sty. To be published
in: "ADASS XIV (2004)", Eds. Patrick Shopbell, Matthew Britton and Rick
Ebert, ASP Conference Serie
Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model
Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in similar to 25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; + 7.7%), mean diffusivity (MD; + 6.1%), axial diffusivity (AD; + 8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2) = 0.72), followed by MD (r(2) = 0.64), AD (r(2) = 0.64) and RD (r(2) = 0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or tractography parameters of the basal forebrain tracts. These findings provide increased support for using DTI and probabilistic tractography as non-invasive tools for diagnosing and/or monitoring the progression of conditions affecting the integrity of the basal forebrain cholinergic system in humans, including Alzheimer's disease. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved
Methanol and excited OH masers towards W51: I - Main and South
MERLIN phase-referenced polarimetric observations towards the W51 complex
were carried out in March 2006 in the Class II methanol maser transition at
6.668 GHz and three of the four excited OH maser hyperfine transitions at 6
GHz. Methanol maser emission is found towards both W51 Main and South. We did
not detect any emission in the excited OH maser lines at 6.030 and 6.049 GHz
down to a 3 sigma limit of ~20 mJy per beam. Excited OH maser emission at 6.035
GHz is only found towards W51 Main. This emission is highly circularly
polarised (typically 45% and up to 87%). Seven Zeeman pairs were identified in
this transition, one of which contains detectable linear polarisation. The
magnetic field strength derived from these Zeeman pairs ranges from +1.6 to
+6.8 mG, consistent with the previously published magnetic field strengths
inferred from the OH ground-state lines. The bulk of the methanol maser
emission is associated with W51 Main, sampling a total area of ~3"x2.2" (i.e.,
~16200x11900 AU), while only two maser components, separated by ~2.5", are
found in the W51 South region. The astrometric distributions of both 6.668-GHz
methanol and 6.035-GHz excited-OH maser emission in the W51 Main/South region
are presented here. The methanol masers in W51 Main show a clear coherent
velocity and spatial structure with the bulk of the maser components
distributed into 2 regions showing a similar conical opening angle with of a
central velocity of ~+55.5 km/s and an expansion velocity of =<5 km/s. The mass
contained in this structure is estimated to be at least 22 solar masses. The
location of maser emission in the two afore-mentioned lines is compared with
that of previously published OH ground-state emission. Association with the
UCHII regions in the W51 Main/South complex and relationship of the masers to
infall or outflow in the region are discussed.Comment: 19 pages, 16 figures and 4 tables, accepted for publication in MNRA
Recommended from our members
Orbitofrontal cortex mediates pain inhibition by monetary reward
Pleasurable stimuli, including reward, inhibit pain, but the level of the neuraxis at which they do so and the cerebral
processes involved are unknown. Here, we characterized a brain circuitry mediating pain inhibition by reward. Twenty-four
healthy participants underwent functional magnetic resonance imaging while playing a wheel of fortune game with simultaneous thermal pain stimuli and monetary wins or losses. As expected, winning decreased pain perception compared to
losing. Inter-individual differences in pain modulation by monetary wins relative to losses correlated with activation in the
medial orbitofrontal cortex (mOFC). When pain and reward occured simultaneously, mOFCs functional connectivity
changed: the signal time course in the mOFC condition-dependent correlated negatively with the signal time courses in the
rostral anterior insula, anterior-dorsal cingulate cortex and primary somatosensory cortex, which might signify momentto-moment down-regulation of these regions by the mOFC. Monetary wins and losses did not change the magnitude of
pain-related activation, including in regions that code perceived pain intensity when nociceptive input varies and/or receive
direct nociceptive input. Pain inhibition by reward appears to involve brain regions not typically involved in nociceptive intensity coding but likely mediate changes in the significance and/or value of pain
Recommended from our members
Search for the disappearance of muon antineutrinos in the NuMI neutrino beam
We report constraints on antineutrino oscillation parameters that were obtained by using the two MINOS detectors to measure the 7% muon antineutrino component of the NuMI neutrino beam. In the Far Detector, we select 130 events in the charged-current muon antineutrino sample, compared to a prediction of 136.4 ± 11.7(stat)^(+10.2)_(-8.9)(syst) events under the assumption │Δm^2│ = 2.32 X 10^(-3) eV^2, sin^2(2θ) = 1.0
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
- …
