1,405 research outputs found

    Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation

    Get PDF
    Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei

    A Novel Use of Light Guides and Wavelength Shifting Plates for the Detection of Scintillation Photons in Large Liquid Argon Detectors

    Full text link
    Scintillation light generated as charged particles traverse large liquid argon detectors adds valuable information to studies of weakly-interacting particles. This paper uses both laboratory measurements and cosmic ray data from the Blanche dewar facility at Fermilab to characterize the efficiency of the photon detector technology developed at Indiana University for the single phase far detector of DUNE. The efficiency of this technology was found to be 0.48% at the readout end when the detector components were characterized with laboratory measurements. A second determination of the efficiency using cosmic ray tracks is in reasonable agreement with the laboratory determination. The agreement of these two efficiency determinations supports the result that minimum ionizing muons generate Nphot=40,000{\mathcal N}_{phot} = 40,000 photons/MeV as they cross the LAr volume.Comment: Accepted version (without final editorial corrections

    Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya

    Get PDF
    Background: Respiratory syncytial virus (RSV) reinfects individuals repeatedly. The extent to which this is a consequence of RSV antigenic diversity is unclear. Methods: Six-hundred thirty-five children from rural Kenya were closely monitored for RSV infection from birth through 3 consecutive RSV epidemics. RSV infections were identified by immunofluorescence testing of nasal washing samples collected during acute respiratory illnesses, typed into group A and B, and sequenced in the attachment (G) protein. A positive sample separated from a previous positive by ≥14 days was defined as a reinfection a priori. Results: Phylogenetic analysis was undertaken for 325 (80%) of 409 identified infections, including 53 (64%) of 83 reinfections. Heterologous group reinfections were observed in 28 episodes, and homologous group reinfections were observed in 25 episodes; 10 involved homologous genotypes, 5 showed no amino acid changes, and 3 were separated by 21–24 days and were potentially persistent infections. The temporal distribution of genotypes among reinfections did not differ from that of single infections. Conclusions: The vast majority of infection and reinfection pairs differed by group, genotype, or G amino acid sequence (ie, comprised distinct viruses). The extent to which this is a consequence of immune memory of infection history or prevalent diversity remains unclear

    Time Domain Explorations With Digital Sky Surveys

    Get PDF
    One of the new frontiers of astronomical research is the exploration of time variability on the sky at different wavelengths and flux levels. We have carried out a pilot project using DPOSS data to study strong variables and transients, and are now extending it to the new Palomar-QUEST synoptic sky survey. We report on our early findings and outline the methodology to be implemented in preparation for a real-time transient detection pipeline. In addition to large numbers of known types of highly variable sources (e.g., SNe, CVs, OVV QSOs, etc.), we expect to find numerous transients whose nature may be established by a rapid follow-up. Whereas we will make all detected variables publicly available through the web, we anticipate that email alerts would be issued in the real time for a subset of events deemed to be the most interesting. This real-time process entails many challenges, in an effort to maintain a high completeness while keeping the contamination low. We will utilize distributed Grid services developed by the GRIST project, and implement a variety of advanced statistical and machine learning techniques.Comment: 5 pages, 2 postscript figures, uses adassconf.sty. To be published in: "ADASS XIV (2004)", Eds. Patrick Shopbell, Matthew Britton and Rick Ebert, ASP Conference Serie

    Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model

    Get PDF
    Loss of basal forebrain cholinergic neurons is an early and key feature of Alzheimer's disease, and magnetic resonance imaging (MRI) volumetric measurement of the basal forebrain has recently gained attention as a potential diagnostic tool for this condition. The aim of this study was to determine whether loss of basal forebrain cholinergic neurons underpins changes which can be detected through diffusion MRI using diffusion tensor imaging (DTI) and probabilistic tractography in a mouse model. To cause selective basal forebrain cholinergic degeneration, the toxin saporin conjugated to a p75 neurotrophin receptor antibody (mu-p75-SAP) was used. This resulted in similar to 25% loss of the basal forebrain cholinergic neurons and significant loss of terminal cholinergic projections in the hippocampus, as determined by histology. To test whether lesion of cholinergic neurons caused basal forebrain, hippocampal, or whole brain atrophy, we performed manual segmentation analysis, which revealed no significant atrophy in lesioned animals compared to controls (Rb-IgG-SAP). However, analysis by DTI of the basal forebrain area revealed a significant increase in fractional anisotropy (FA; + 7.7%), mean diffusivity (MD; + 6.1%), axial diffusivity (AD; + 8.5%) and radial diffusivity (RD; +4.0%) in lesioned mice compared to control animals. These parameters strongly inversely correlated with the number of choline acetyl transferase-positive neurons, with FA showing the greatest association (r(2) = 0.72), followed by MD (r(2) = 0.64), AD (r(2) = 0.64) and RD (r(2) = 0.61). Moreover, probabilistic tractography analysis of the septo-hippocampal tracts originating from the basal forebrain revealed an increase in streamline MD (+5.1%) and RD (+4.3%) in lesioned mice. This study illustrates that moderate loss of basal forebrain cholinergic neurons (representing only a minor proportion of all septo-hippocampal axons) can be detected by measuring either DTI parameters of the basal forebrain nuclei or tractography parameters of the basal forebrain tracts. These findings provide increased support for using DTI and probabilistic tractography as non-invasive tools for diagnosing and/or monitoring the progression of conditions affecting the integrity of the basal forebrain cholinergic system in humans, including Alzheimer's disease. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved

    Methanol and excited OH masers towards W51: I - Main and South

    Full text link
    MERLIN phase-referenced polarimetric observations towards the W51 complex were carried out in March 2006 in the Class II methanol maser transition at 6.668 GHz and three of the four excited OH maser hyperfine transitions at 6 GHz. Methanol maser emission is found towards both W51 Main and South. We did not detect any emission in the excited OH maser lines at 6.030 and 6.049 GHz down to a 3 sigma limit of ~20 mJy per beam. Excited OH maser emission at 6.035 GHz is only found towards W51 Main. This emission is highly circularly polarised (typically 45% and up to 87%). Seven Zeeman pairs were identified in this transition, one of which contains detectable linear polarisation. The magnetic field strength derived from these Zeeman pairs ranges from +1.6 to +6.8 mG, consistent with the previously published magnetic field strengths inferred from the OH ground-state lines. The bulk of the methanol maser emission is associated with W51 Main, sampling a total area of ~3"x2.2" (i.e., ~16200x11900 AU), while only two maser components, separated by ~2.5", are found in the W51 South region. The astrometric distributions of both 6.668-GHz methanol and 6.035-GHz excited-OH maser emission in the W51 Main/South region are presented here. The methanol masers in W51 Main show a clear coherent velocity and spatial structure with the bulk of the maser components distributed into 2 regions showing a similar conical opening angle with of a central velocity of ~+55.5 km/s and an expansion velocity of =<5 km/s. The mass contained in this structure is estimated to be at least 22 solar masses. The location of maser emission in the two afore-mentioned lines is compared with that of previously published OH ground-state emission. Association with the UCHII regions in the W51 Main/South complex and relationship of the masers to infall or outflow in the region are discussed.Comment: 19 pages, 16 figures and 4 tables, accepted for publication in MNRA
    corecore