38 research outputs found

    Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    Get PDF
    Background: Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings: Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions: We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells

    Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    Regulation of basal cellular physiology by the homeostatic unfolded protein response

    Get PDF
    The extensive membrane network of the endoplasmic reticulum (ER) is physically juxtaposed to and functionally entwined with essentially all other cellular compartments. Therefore, the ER must sense diverse and constantly changing physiological inputs so it can adjust its numerous functions to maintain cellular homeostasis. A growing body of new work suggests that the unfolded protein response (UPR), traditionally charged with signaling protein misfolding stress from the ER, has been co-opted for the maintenance of basal cellular homeostasis. Thus, the UPR can be activated, and its output modulated, by signals far outside the realm of protein misfolding. These findings are revealing that the UPR causally contributes to disease not just by its role in protein folding but also through its broad influence on cellular physiology

    Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    Return of the Pre-Colonial Environment? Land Questions and the Environmental Imagination of Nationhood in Southern African Literature

    No full text
    As historical and sociological studies of land questions multiply across Southern Africa, the possibilities for thinking about the literary imagination of Southern African environments expand. Thinking about changing governmental conceptions of land ownership and land usage, sociologist Ruth Hall argues that an expansive land question is a question of “how our cities and rural areas can look different” (Interview). Her words belie analytic connections between urban migration and land discourse, linking two, often diametrically opposed spaces. Land questions form political bases and lead to paradigmatic shifts. As Southern African literature responds to land questions and their potential for widespread change, such literature participates in contests over “environment,” squaring developmental and community concepts, urging epistemic reevaluation. I argue that selected Southern African literatures take on what I consider to be an environmental imagination of nationhood. They do this precisely by engaging schisms between governmental and popular conceptions of land

    The sirtuins, oxidative stress and aging: An emerging link

    Get PDF
    Reactive oxygen species (ROS) are a family of compounds that can oxidatively damage cellular macromolecules and may influence lifespan. Sirtuins are a conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that regulat

    Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells

    No full text
    The endoplasmic reticulum (ER) performs a critical role in the oxidative folding of nascent proteins such that perturbations to ER homeostasis may lead to protein misfolding and subsequent pathological processes. Among the mechanisms for maintaining ER homeostasis is a redox regulation, which is a critical determinant of the fate of ER stressed cells. Here we report the establishment of a system for monitoring ER redox state in mammalian cells. The new ER redox sensing system was developed based on the previously described monitoring system in yeast. Our system could successfully monitor the dynamic ER redox state in mammalian cells. Using this system, we find that manipulation of ER oxidases changes ER redox state. The mammalian ER redox sensing system could be used to study the mechanisms of ER redox regulation and provide a foundation for an approach to develop novel therapeutic modalities for human diseases related to dysregulated ER homeostasis including diabetes, neurodegeneration and Wolfram syndrome

    Delayed Ras/PKA signaling augments the unfolded protein response

    No full text
    During environmental, developmental, or genetic stress, the cell’s folding capacity can become overwhelmed, and misfolded proteins can accumulate in all cell compartments. Eukaryotes evolved the unfolded protein response (UPR) to counteract proteotoxic stress in the endoplasmic reticulum (ER). Although the UPR is vital to restoring homeostasis to protein folding in the ER, it has become evident that the response to ER stress is not limited to the UPR. Here, we used engineered orthogonal UPR induction, deep mRNA sequencing, and dynamic flow cytometry to dissect the cell’s response to ER stress comprehensively. We show that budding yeast augments the UPR with time-delayed Ras/PKA signaling. This second wave of transcriptional dynamics is independent of the UPR and is necessary for fitness in the presence of ER stress, partially due to a reduction in general protein synthesis. This Ras/PKA-mediated effect functionally mimics other mechanisms, such as translational control by PKR-like ER kinase (PERK) and regulated inositol-requiring enzyme 1 (IRE1)-dependent mRNA decay (RIDD), which reduce the load of proteins entering the ER in response to ER stress in metazoan cells

    Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors

    No full text
    Under endoplasmic reticulum (ER) stress, unfolded proteins accumulate in the ER to activate the ER transmembrane kinase/endoribonuclease (RNase)—IRE1α. IRE1α oligomerizes, autophosphorylates, and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein response (UPR). Here we show that IRE1α’s kinase-controlled RNase can be regulated in two distinct modes with kinase inhibitors: one class of ligands occupy IRE1α’s kinase ATP-binding site to activate RNase-mediated XBP1 mRNA splicing even without upstream ER stress, while a second class can inhibit the RNase through the same ATP-binding site, even under ER stress. Thus, alternative kinase conformations stabilized by distinct classes of ATP-competitive inhibitors can cause allosteric switching of IRE1α’s RNase—either on or off. As dysregulation of the UPR has been implicated in a variety of cell degenerative and neoplastic disorders, small molecule control over IRE1α should advance efforts to understand the UPR’s role in pathophysiology and to develop drugs for ER stress-related diseases
    corecore