124 research outputs found

    The Rescue of BAT 21

    Get PDF

    DNMT1 mutations found in HSANIE patients affect interaction with UHRF1 and neuronal differentiation

    No full text
    DNMT1 is recruited to substrate sites by PCNA and UHRF1 to maintain DNA methylation after replication. The cell cycle dependent recruitment of DNMT1 is mediated by the PCNA-binding domain (PBD) and the targeting sequence (TS) within the N-terminal regulatory domain. The TS domain was found to be mutated in patients suffering from hereditary sensory and autonomic neuropathies with dementia and hearing loss (HSANIE) and autosomal dominant cerebellar ataxia deafness and narcolepsy (ADCA-DN) and is associated with global hypomethylation and site specific hypermethylation. With functional complementation assays in mouse embryonic stem cells, we showed that DNMT1 mutations P496Y and Y500C identified in HSANIE patients not only impair DNMT1 heterochromatin association, but also UHRF1 interaction resulting in hypomethylation. Similar DNA methylation defects were observed when DNMT1 interacting domains in UHRF1, the UBL and the SRA domain, were deleted. With cell-based assays, we could show that HSANIE associated mutations perturb DNMT1 heterochromatin association and catalytic complex formation at methylation sites and decrease protein stability in late S and G2 phase. To investigate the neuronal phenotype of HSANIE mutations, we performed DNMT1 rescue assays and could show that cells expressing mutated DNMT1 were prone to apoptosis and failed to differentiate into neuronal lineage. Our results provide insights into the molecular basis of DNMT1 dysfunction in HSANIE patients and emphasize the importance of the TS domain in the regulation of DNA methylation in pluripotent and differentiating cells

    No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint

    Get PDF
    Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view

    Multicenter evaluation of a lateral-flow device test for diagnosing invasive pulmonary aspergillosis in ICU patients.

    Get PDF
    Published onlineClinical TrialJournal ArticleMulticenter StudyResearch Support, Non-U.S. Gov'tINTRODUCTION: The incidence of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is increasing, and early diagnosis of the disease and treatment with antifungal drugs is critical for patient survival. Serum biomarker tests for IPA typically give false-negative results in non-neutropenic patients, and galactomannan (GM) detection, the preferred diagnostic test for IPA using bronchoalveolar lavage (BAL), is often not readily available. Novel approaches to IPA detection in ICU patients are needed. In this multicenter study, we evaluated the performance of an Aspergillus lateral-flow device (LFD) test for BAL IPA detection in critically ill patients. METHODS: A total of 149 BAL samples from 133 ICU patients were included in this semiprospective study. Participating centers were the medical university hospitals of Graz, Vienna and Innsbruck in Austria and the University Hospital of Mannheim, Germany. Fungal infections were classified according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. RESULTS: Two patients (four BALs) had proven IPA, fourteen patients (sixteen BALs) had probable IPA, twenty patients (twenty-one BALs) had possible IPA and ninety-seven patients (one hundred eight BALs) did not fulfill IPA criteria. Sensitivity, specificity, negative predictive value, positive predictive value and diagnostic odds ratios for diagnosing proven and probable IPA using LFD tests of BAL were 80%, 81%, 96%, 44% and 17.6, respectively. Fungal BAL culture exhibited a sensitivity of 50% and a specificity of 85%. CONCLUSION: LFD tests of BAL showed promising results for IPA diagnosis in ICU patients. Furthermore, the LFD test can be performed easily and provides rapid results. Therefore, it may be a reliable alternative for IPA diagnosis in ICU patients if GM results are not rapidly available. TRIAL REGISTRATION: ClinicalTrials.gov NCT02058316. Registered 20 January 2014.PfizerOesterreichische Nationalbank (Anniversary Fund, project number 15346)

    In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

    Get PDF
    The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs

    The impact of working memory load on task execution and online plan adjustment during multitasking in a virtual environment

    Get PDF
    Three experiments investigated the impact of working memory load on online plan adjustment during a test of multitasking in young, nonexpert, adult participants. Multitasking was assessed using the Edinburgh Virtual Errands Test (EVET). Participants were asked to memorize either good or poor plans for performing multiple errands and were assessed both on task completion and on the extent to which they modified their plans during EVET performance. EVET was performed twice, with and without a secondary task loading a component of working memory. In Experiment 1, articulatory suppression was used to load the phonological loop. In Experiment 2, oral random generation was used to load executive functions. In Experiment 3, spatial working memory was loaded with an auditory spatial localization task. EVET performance for both good- and poor-planning groups was disrupted by random generation and sound localization, but not by articulatory suppression. Additionally, people given a poor plan were able to overcome this initial disadvantage by modifying their plans online. It was concluded that, in addition to executive functions, multiple errands performance draws heavily on spatial, but not verbal, working memory resources but can be successfully completed on the basis of modifying plans online, despite a secondary task load

    Nucleosomes Containing Methylated DNA Stabilize DNA Methyltransferases 3A/3B and Ensure Faithful Epigenetic Inheritance

    Get PDF
    How epigenetic information is propagated during somatic cell divisions is still unclear but is absolutely critical for preserving gene expression patterns and cellular identity. Here we show an unanticipated mechanism for inheritance of DNA methylation patterns where the epigenetic mark not only recruits the catalyzing enzyme but also regulates the protein level, i.e. the enzymatic product (5-methylcytosine) determines the level of the methylase, thus forming a novel homeostatic inheritance system. Nucleosomes containing methylated DNA stabilize de novo DNA methyltransferases, DNMT3A/3B, allowing little free DNMT3A/3B enzymes to exist in the nucleus. Stabilization of DNMT3A/3B on nucleosomes in methylated regions further promotes propagation of DNA methylation. However, reduction of cellular DNA methylation levels creating more potential CpG substrates counter-intuitively results in a dramatic decrease of DNMT3A/3B proteins due to diminished nucleosome binding and subsequent degradation of the unstable free proteins. These data show an unexpected self-regulatory inheritance mechanism that not only ensures somatic propagation of methylated states by DNMT1 and DNMT3A/3B enzymes but also prevents aberrant de novo methylation by causing degradation of free DNMT3A/3B enzymes

    Route planning with transportation network maps: an eye-tracking study.

    Get PDF
    Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning

    Recognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain

    Get PDF
    Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the hydroxyl group
    • …
    corecore