21 research outputs found
Crystallization and visible-near-infrared luminescence of Bi-doped gehlenite glass
Gehlenite glass microspheres, doped with a different concentration of Bi3+ ions (0.5, 1, 3 mol%), were prepared by a combination of solid-state reaction followed by flame synthesis. The prepared glass microspheres were characterized from the point of view of surface morphology, phase composition, thermal and photoluminescence (PL) properties by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and PL spectroscopy. The closer inspection of glass microsphere surface by SEM confirmed a smooth surface. This was further verified by XRD. The basic thermal characteristics of prepared glasses, i.e. Tg (glass transition temperature), Tx (onset of crystallization peak temperature), Tf (temperature of the inflection point of the crystallization peak) and Tp (maximum of crystallization peak temperature), were estimated from the DSC records. High-temperature XRD experiments in the temperature interval range 600–1100°C were also performed. The PL emission properties of prepared glasses and their polycrystalline analogues (glass crystallized at 1000°C for 10 h) were studied in the visible and near-infrared (NIR) spectral range. When excited at 300 nm, the glasses, as well as their polycrystalline analogues, exhibit broad emission in the visible spectral range from 350 to 650 nm centred at about 410–450 nm, corresponding to Bi3+ luminescence centres. The emission intensity of polycrystalline samples was found to be at least 30 times higher than the emission of their glass analogues. In addition, a weak emission band was observed around 775 nm under 300 nm excitation. This band was attributed to the presence of a minor amount of Bi2+ species in prepared samples. In the NIR spectral range, the broad band emission was observed in the spectral range of 1200–1600 nm with the maxima at 1350 nm. The chemistry of Bi and its oxidation state equilibrium in glasses and polycrystalline matrices is discussed in detail
Magnetic properties of yttrium iron garnet polycrystalline material prepared by spray-drying synthesis
The yttrium iron garnet polycrystalline powder was prepared by spry-drying synthesis from nitrates solution. The calcined powder was pressed into pellets and sintered at various temperatures for 2 hours. Prepared samples were characterized by XRD analysis and magnetic properties were measured. The magnetic moment of 4.3 µB and saturation magnetization of 24 Am2kg-1were observed for sample sintered at 1000 °C
Magnetic Properties of Yttrium Iron Garnet Polycrystalline Material Prepared by Spray-Drying Synthesis
Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome
The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients
The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis
Effect of Colloidal Silica Dioxide on Rheological Properties of Common Pharmaceutical Excipients.
In this work, the rheological properties of silicified microcrystalline cellulose and pregelatinized starch was investigated in comparison to the characteristics of pure excipients. At first, pure materials were analysed on scanning electron microscopy (SEM) to obtain their particle size distribution and particle shape. Also the rheological properties of all three substances were examined by the Freeman FT4 rheometer. The observed properties were in accordance with known characteristics and typical behaviour of the excipients
Tissue fusion and enhanced genotypic diversity support the survival of Pocillopora acuta coral recruits under thermal stress
Magnetic Properties of Synthetic Gehlenite Glass Microspheres
In the paper, gehlenite amorphous microspheres were prepared by the flame synthesis of a powder precursor. In the first step, the precursor was prepared from a stoichiometric mixture of CaCO₃, Al₂O₃ and SiO₂ by a standard solid-state reaction method. Next, the precursor was sprayed into a CH₄-O₂ flame with the temperature of around 2200°C and molten droplets of synthetic gehlenite were rapidly cooled by distilled water. Structural and detailed magnetic properties were studied by the optical microscopy, X-ray diffraction and QD SQUID magnetometer. The gehlenite microspheres show a complex magnetic behaviour that is a function of the temperature and the magnetic field, e.g. diamagnetism and paramagnetism at 300 K and 2 K, respectively
