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ON THE ORDER OF SUMMABILITY OF THE FOURIER
INVERSION FORMULA

JASSON VINDAS AND RICARDO ESTRADA

Abstract. In this article we show that the order of the point value,
in the sense of  Lojasiewicz, of a tempered distribution and the order of
summability of the pointwise Fourier inversion formula are closely re-
lated. Assuming that the order of the point values and certain order
of growth at infinity are given for a tempered distribution, we estimate
the order of summability of the Fourier inversion formula. For Fourier
series, and in other cases, is shown that if the distribution has a dis-
tributional point value of order k, then its Fourier series is e.v. Cesàro
summable to the distributional point value of order k+1. Conversely, we
also show that if the pointwise Fourier inversion formula is e.v. Cesàro
summable of order k, then the distribution is the (k + 1)-th derivative
of a locally integrable function, and the distribution has a distributional
point value of order k +2. We also establish connections between orders
of summability and local behavior for other Fourier inversion problems.

1. Introduction

The present article is concerned with the study of the summability of the
pointwise Fourier inversion formula for tempered distributions reported in
[35, 36].

The study of the relation between the value of a function at a point and
the convergence and summability of Fourier series and Fourier integrals has
a long history. Since the convergence fails in most interesting cases, this
study is carry out by means of summability methods.

In the case of Fourier series, it was said by A. Zygmund [46] that the
problem of summability of Fourier Series of classical functions at individual
points could be considered as a closed chapter in Mathematics. However,
since the introduction of the so called Generalized Functions, new problems
were opened.

Using the concept of the value of a distribution at a point in the sense
of  Lojasiewicz [21], one can extend many results from the classical theory
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of Fourier series of functions to distributions. For example, one of the most
basic results in the classical theory says that if f ∈ L1[0, 2π] its (symmetric)
Fourier series is (C, 1) summable at every Lebesgue point [11, 19, 46], then,
this result admits extension. The first extension to periodic distributions
was given by G. Walter [42, 43]; moreover, he implicitly obtained the order
of Cesàro summability of the symmetric partial sums in terms of the order
of the distributional point value. Multidimensional problems for the Fourier
transform have been investigated in [12, 38].

A distributional point of view of Fourier series is sometimes more conve-
nient because it provides new interpretations of summability of trigonomet-
ric series that the classical point of view hides in somehow. For instance,
the relationship between existence of the distributional point value and the
Cesàro summability of Fourier series has been achieved in the following result
which completely characterizes distributional point values [6]. It is remark-
able that such a characterization has not been given for classical functions.

Theorem 1.1. Let f ∈ D′(R) be a periodic distribution of period 2π and
let

∑∞
n=−∞ cne

inx be its Fourier series. Let x0 ∈ R. Then f(x0) = γ, in the
sense of  Lojasiewicz, if and only if there exists k ∈ N such that

lim
x→∞

∑
−x<n≤ax

cne
inx0 = γ (C, k) ,

for each a > 0.

Notice that when a = 1, the case of symmetric Cesàro means, the above
limit reduces to the statement of the (C, k) summability of the usual sines
and cosines Fourier series of the distribution.

We emphasize that the use of asymmetric partial sums is fundamen-
tal, since the Cesàro summability of the symmetric partial sums is not
enough to conclude the existence of the distributional point value (f(x) =∑∞

n=1 n sinnx at x = 0 is an example).
In the case of Fourier integrals of classical functions the situation is sim-

ilar to that of Fourier series, summability methods must be employed as
well. One has also a Cesàro summability version for the Fourier inversion
integral formula in a theorem due to Plancherel [27, 31]. Other methods of
summability are also studied in classical books [3, 4]. Actually, the approach
given in [3, 4] is very close to distributional point values. Indeed, what they
do is to consider pointwise inversion formulas of the type

(1.1) lim
x→∞

1
2π

∫ ∞

−∞
f̂(t)eix0tφ

(
t

x

)
dt = φ(0)f(x0) ,

which is what one usually does in distribution theory when dealing with
distributional point values.

In recent works, the authors have been able to characterize the distri-
butional point values of tempered distributions by means of a generalized
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pointwise Fourier inversion formula [35, 36]. Let us state this result; we will
explain the notation later, in Section 2.

Theorem 1.2. Let f ∈ S ′(R). We have f(x0) = γ, in the sense of
 Lojasiewicz, if and only if there exists a k ∈ N such that

1
2π

e.v.
〈
f̂ (t) , eix0t

〉
= γ (C, k) ,

which in case f̂ is locally integrable means that

1
2π

e.v.
∫ ∞

−∞
f̂(t)eix0tdt = γ (C, k) .

This result includes Theorem 1.1 as a special case and also includes
“trigonometric integrals” of tempered functions. Theorem 1.2 provides a
complete characterization of the distributional point values of tempered dis-
tributions. However, Theorems 1.1 and its extension to tempered distri-
butions, Theorem 1.2, have a little gap, namely, they do not establish a
connection between the order of summability of the Fourier inversion for-
mula and the order of the point values (see Section 2 for definitions of these
two orders).

Our aim in this work is to establish a relation between these two orders.
Among other results, we show that if a tempered distribution, with certain
restrictions of growth at ∞, has a point value of order k, then the special
value of the Fourier inversion formula is summable (C, k + 1) to the value.
In the case of Fourier series, these restrictions of growth do not appear,
hence we generalized the result from [42] and [45]. We also reformulate the
result for Fourier series and integrals in terms of summability with respect
to a family of kernels, and hence the characterization of distributional point
values takes the form of (1.1) for just certain φ’s taken from this family of
summability kernels.

It is interesting to mention that these ideas are closely related to the
classical problem of (C) summability for Fourier series (see [46, Chapter XI]
and references therein). The first to formulate the problem were Hardy and
Littlewood [16, 17]. It basically aims to characterize trigonometric series
such that their sines and cosines series,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) ,

are Cesàro summable at a given point x0 and whose coefficients are of slow
growth (hence they are tempered distributions!). If we do not care about the
order of (C) summability, then distributional point values provide an easy
and quick solution to this problem [9, Theorem 6.14.5]. A classical approach
to this problem is presented in [46, Chapter XI], where the problem of (C)
summability of the symmetric partial sums is investigated with the use of
generalized symmetric derivatives of integrated trigonometric series (notion
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which turns out to be equivalent to work with symmetric point values as
shown in Section 6).

The paper is organized as follows. In Section 2, we explain the notions
and results from the theory of generalized functions (distributions) to be
used in this paper. In Section 3, we show that for certain tempered dis-
tributions having a point value of order k at a point, the special value of
the Fourier inversion formula is summable (C, β) to the point value for any
β > k; then, we apply this result to cases of interest; at the end of the
section we calculate a bound for the order of summability of the Fourier
inversion formula in the general case. Section 4 is devoted to discuss some
properties of asymptotically homogeneous functions of degree 0, which will
be a fundamental tool in studying summability of the special value point-
wise Fourier inversion formula for tempered distributions. In Section 5, we
study the opposite problem, namely, we estimate the order of the point value
having the order of Cesàro summability of pointwise Fourier inversion for-
mula. Section 6 is dedicated to the study of symmetric distributional point
values; we formulate and solve the problem of symmetric (C) summability
for tempered distributions, on the way we recover the classical results for
Fourier series [16, 14, 45]. Finally, we study jumps of distributions and find
the order in various formulas for the jump originally found in [36, 37].

2. Preliminaries and Notation

In this section we explain the spaces of test functions and distributions
needed in this paper. We also give a summary of the notion of the value of
a distribution at a point [9, 21], Cesàro behavior and limits of distributions
at infinity [7] and some related concepts [35, 36] needed in the future. All
of our functions and distributions are over the real line.

The space of test functions D and S and the corresponding spaces of
distributions D′ and S ′ are well known [29, 41]. Given φ ∈ S, we define its
Fourier transform by

F(φ)(x) =
∫ ∞

−∞
φ(t)e−ixtdt ;

on S ′ the Fourier transform is defined as the transpose of the map φ 7−→
F(φ) from S to S. We will use indistinctly the notations f̂ , F(f) and
F {f(t);x} to denote the Fourier transform of f .

Denote by Γ the Euler gamma function. Recall the definition of the
distributions xβ

+/Γ(β + 1), which are defined for all β ∈ C. For <e β >
−1, they are regular distributions (locally Lebesgue integrable functions)
supported on [0,∞) , and they are defined by analytic continuation for the
other values of β [9, 29, 40]. Note also that when β = −k, k being a positive
integer, then they reduce to δ(k)(x), where δ(x) is the very well known Dirac
delta distribution.
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Given a distribution f ∈ D′ supported on the interval [0,∞), we denote
its primitive of order β (in short β-primitive) by the convolution [40, 41]

f (−β) = f ∗
xβ−1

+

Γ(β)
.

Note that the β-primitive is nothing else but the fractional derivative [41]
of order −β. Since we will frequently use fractional primitives in long calcu-
lations, its convenient to introduce some additional notation. Thus, we also
denote the β-primitive by

Iβ {f(t);x} := f (−β)(x) ,

so that when f is locally integrable,

(2.1) Iβ {f(t);x} =
1

Γ(β)

∫ x

0
f(t) (x− t)β−1 dt .

When f is no longer supported on [0,∞), we cannot in general speak about
fractional order primitives. However, if k ∈ N, we say that F is a k-primitive
of f if F (k) = f . When f is locally integrable (not necessarily supported on
[0,∞)), we can still use the k-primitive given by formula (2.1) with k = β.

The Cesàro behavior of a distribution at infinity is studied by using the
order symbols O (xα) and o (xα) in the Cesàro sense [7, 9]. If f ∈ D′ and
α ∈ R\{−1,−2,−3, . . . }, we say that f(x) = O(xα) as x→∞ in the Cesàro
sense and write

f(x) = O(xα) (C) , as x→∞ ,

if there exists k ∈ N such that every primitive F of order k of f is an ordinary
function (locally integrable) for positive large arguments and satisfies the
ordinary order relation

F (x) = p(x) +O(xα+k) , as x→∞ ,

for a suitable polynomial p of degree at most k − 1. Note that if α > −1,
then the polynomial p is irrelevant. To emphasize the order of the Cesàro
behavior, it is convenient to write

f(x) = O(xα) (C, k) , as x→∞ .

A similar definition applies to the little o symbol. The definitions when
x→ −∞ are clear.

Using these ideas, one can define the limit of a distribution at ∞ in the
Cesàro sense [7, 9]. We should now extend the definition of limits in the
Cesàro sense in order to allow fractional orders.

Definition 2.1. Let f ∈ D′ and β ≥ 0 . We say that f has a limit ` at
infinity in the Cesàro sense of order β (in the (C, β) sense) and write

(2.2) lim
x→∞

f(x) = ` (C, β) ,

if for a decomposition f = f− + f+ as sum of two distributions supported
on (−∞, 0] and [0,∞), respectively, one has that the β-primitive of f+ is an
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ordinary function (locally integrable) for large arguments and satisfies the
ordinary asymptotic relation

f
(−β)
+ (x) =

` xβ

Γ(β + 1)
+ o

(
xβ

)
, as x→∞ .

The reader can easily check that the definition does not depend on the
decomposition f = f− + f+. If we do not want to make reference to the
order β in (2.2), we simply write

lim
x→∞

f(x) = ` (C) .

We now turn our attention to the local behavior of generalized functions
[9, 26, 39, 40].  Lojasiewicz [21] defined the value of a distribution f ∈ D′ at
the point x0 as the limit

f(x0) := γ = lim
ε→0

f(x0 + εx) ,

if the limit exists in D′, that is if

(2.3) lim
ε→0

〈f(x0 + εx), φ(x)〉 = γ

∫ ∞

−∞
φ(x) dx ,

for each φ ∈ D. Since (2.3) is only supposed to hold for φ ∈ D, we emphasize
this fact saying that f(x0) = γ in D′, in case that (2.3) is satisfied. Suppose
now that f ∈ S ′ and f(x0) = γ in D′; initially, (2.3) does not have to be
true for φ ∈ S. However, it is shown in [8, Corollary 1] and [39, Section 6]
that if (2.3) holds for φ ∈ D, it will remain true for φ ∈ S; so we are in the
right to say f(x0) = γ in S ′, and this is equivalent to the existence of f(x0)
in D′.

It was shown by  Lojasiewicz [21] that the existence of the distributional
point value f(x0) = γ is equivalent to the existence of n ∈ N, and a primitive
of order n of f , that is F (n) = f , which is continuous in a neighborhood of
x0 and satisfies

(2.4) lim
x→x0

n!F (x)
(x− x0)n = γ .

Note that (2.4) says that any n-primitive of f has an nth differential in the
sense of Peano [2] (see also [46, Chapter XI, page 59] in connection with
differentiated trigonometric series).

It is convenient to define the order of the value of a tempered distribu-
tion at a point. Our definition differs from that of  Lojasiewicz [21]. We
should adopt a little variant of  Lojasiewicz’s original definition for the sake
of convenience.

Definition 2.2. Let f be a tempered distribution. We say that f has a
(distributional) point value γ at x0 in S ′ of order n, and write f(x0) = γ in
S ′ with order n, if n is the minimum integer such that there exists a locally
bounded measurable function F of polynomial growth at infinity such that
F (n) = f and F satisfies (2.4).
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A similar definition has been also adopted in [44, Section 8.3, Definition
8.1] for studying distributional point values of tempered distributions in re-
lation with orthogonal wavelets and multiresolution analysis approximations
for spaces of tempered distributions.

The final concept we would like to discuss here is that of distributional
evaluations in the e.v. Cesàro sense, as defined by the authors in [35, 36].

Definition 2.3. Let g ∈ D′, φ ∈ C∞(R) and β ≥ 0. We say that the
evaluation 〈g (x) , φ (x)〉 exists in the e.v. Cesàro sense (of order β), and
write

(2.5) e.v. 〈g (x) , φ (x)〉 = γ (C, β) ,

if for some primitive G of gφ and ∀a > 0 we have

lim
x→∞

(G(ax)−G(−x)) = γ (C, β) .

If g is locally integrable then we write (2.5) as

(2.6) e.v.
∫ ∞

−∞
g (x)φ (x) dx = γ (C, β) .

If (2.5) exists, we also say that the special value of the evaluation exists in
the (C, β) sense. Similarly for (2.6), we say that the special value of the
integral exists in the (C, β) sense.

The last definition allows us to make sense out of the Fourier inversion
formula; indeed [35, 36], the authors have shown that f ∈ S ′ has a point
value γ at x0 if and only if

(2.7) e.v.
〈
f̂(x), eix0x

〉
= 2πγ (C, k) ,

for some k ∈ N. As we mentioned at the Introduction, this result does not
say anything about the relationship between the order of summability of
this inversion formula and the order of the point value; this will be the main
subject of Section 3 and Section 5 in the present article.

3. Order of summability

In this section we obtain a bound for the order of summability of the
Fourier inversion formula for tempered distributions in the general case.
We also analyze two particular cases, the case of Fourier series and the
case of distributions with compact support; in both cases we obtain the
expected result: if the distribution has a value of order k, then the order of
summability of the Fourier inversion formula is at least k + 1.

Suppose that f ∈ S ′ is so that f̂ ∈ L1
loc(R). Denote by θA the character-

istic function of a set A. Then note that (2.7) holds if and only if

(3.1) lim
x→∞

1
2π

∫ ∞

−∞
f̂(t)eix0tφβ

a

(
t

x

)
dt = f(x0) ,
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where φβ
a is the summability kernel given by

(3.2) φβ
a(t) = (1 + t)βθ[−1,0](t) +

(
1− t

a

)β

θ[0,a](t) .

Indeed, this follows directly from Definition 2.3. Observe that we may con-
sider (3.2) as the summability kernels of asymmetric (C, β) means. Notice
also that if (3.1) holds for some β, then it holds for any β̃ ≥ β. We shall
need some properties of these kernels, they are stated in the next lemma.

Lemma 3.1. Suppose that 0 < β ≤ 1. Then,∣∣∣φ̂β
a(t)

∣∣∣ ≤ 2 + 3β
(
1 + a−1

)
tβ+1

, t > 1 .

Moreover,
∫∞
−∞ φ̂β

a(t)dt = 2π.

Proof. Suppose the inequality is satisfied, then φ̂β
a ∈ L1(R) ∩ L2(R), so

the very well known classical result [4, page 62] implies that the pointwise
Fourier inversion formula holds in this case, and thus we have

∫∞
−∞ φ̂β

a(t)dt =
2πφβ

a(0) = 2π. Let us now show the inequality.∣∣∣φ̂β
a(t)

∣∣∣ =
∣∣∣∣∫ 1

0
(1− u)β(eitu + ae−iatu)du

∣∣∣∣
=
β

t

∣∣∣∣∫ 1

0
(1− u)β−1(e−iatu − eitu)du

∣∣∣∣
=

β

tβ+1

∣∣∣∣∫ t

0
uβ−1(e−iateiau − eite−iu)du

∣∣∣∣
≤ 2
tβ+1

+
β

tβ+1

∣∣∣∣∫ t

1
uβ−1(e−iateiau − eite−iu)du

∣∣∣∣
≤ 2
tβ+1

+
β

tβ+1
(a−1 + 1)

(
1 + tβ−1 + (1− β)

∫ ∞

1
uβ−2du

)
,

where in the last step we have used integration by parts. �

The explicit value of the constant term in the bound from the last lemma is
unimportant, however, we will use the fact that this estimate holds uniformly
for a on compact subsets of (0,∞).

We start to study the pointwise Fourier inversion formula. We first show
a proposition concerning the L2(R)-case. The proof of the following propo-
sition is similar to that of [31, Theorem 13], but we include it for the sake
of completeness.

Proposition 3.2. Suppose that g ∈ L2(R). If g is continuous at x0, then
we have for any β > 0,

1
2π

e.v.
〈
ĝ(t), eix0t

〉
= g(x0) (C, β) ,
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or, which amounts to the same,

(3.3) lim
x→∞

1
2π

∫ ∞

−∞
ĝ(t)eix0tφβ

a

(
t

x

)
dt = g(x0) ,

uniformly for a on compact subsets of (0,∞).

Proof. By considering g(x+ x0), we may assume that x0 = 0. We may also
assume that 0 < β ≤ 1, because if it holds for those values of β, then it
holds for any β > 0.

We have that∫ ∞

−∞
ĝ(t)φβ

a

(
t

x

)
dt = x

∫ ∞

−∞
g(t)φ̂β

a (xt) dt .

Therefore (3.3) holds if and only if

lim
x→∞

∫ ∞

−∞
g(t)Kβ

a (t, x) dt = g(0) ,

where Kβ
a (t, x) = xφ̂β

a (xt) /(2π). Now, because of Lemma 3.1 and the
boundedness of φ̂β

a , the kernel Kβ
a (t, x) satisfies the following properties

(3.4)
∫ ∞

−∞
Kβ

a (t, x)dt = 1,
∣∣∣Kβ

a (t, x)
∣∣∣ ≤Mx ,

∣∣∣Kβ
a (t, x)

∣∣∣ ≤ N

xβtβ+1
,

for some positives constants M and N , and the last inequality being valid
for x |t| ≥ 1. The estimates are satisfied uniformly for a on compact sets.
Pick δ > 0 such that if |t| < δ then |g(t)− g(0)| < ε; keep x−1 < min {ε, δ},
then ∣∣∣∣∫ ∞

−∞
(g(t)− g(0))Kβ

a (t, x)dt
∣∣∣∣

≤ ε

∫ 1
x

− 1
x

∣∣∣Kβ
a (t, x)

∣∣∣ dt+
∫
|t|≥ 1

x

|g(t)− g(0)|
∣∣∣Kβ

a (t, x)
∣∣∣ dt

≤ 2ε(M +Nβ−1) +
N

xβ

∫ ∞

|t|≥δ

|g(t)− g(0)|
tβ+1

dt

hence,

lim
x→∞

∣∣∣∣ 1
2π

∫ ∞

−∞
ĝ(t)φa

(
t

x

)
dt− g(0)

∣∣∣∣ ≤ 2ε(M +Nβ−1) ,

since ε is arbitrary, this completes the proof. �

Remark 3.3. Proposition 3.2 still holds if one assumes that x0 is a Lebesgue
point of g instead of the continuity at x0. This proposition is also true for ker-
nels φ other than φβ

a ; in fact, the proposition is valid if K(t, x) = xφ(xt)/(2π)
satisfies (3.4), that is K(t, x) satisfies

∫∞
−∞K(t, x)dt = 1, |K(t, x)| ≤Mx for

|t|x < B and |K(t, x)| < Nx−αt−α−1, for some positive constants B,M,N
and α. For other related results, the reader can consult Titchmarsh’s book
[31, Chapter 1].
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In order to make further progress, we need two formulas. They are stated
in the next two lemmas.

Lemma 3.4. Let h ∈ D′ and m, k ∈ N. Suppose that m ≥ k, then

xkh(m)(x) =
k∑

j=0

(−1)j k!
(k − j)!

(
m

j

)
dm−j

dxm−j

(
xk−jh(x)

)
.

Proof. It follows directly form the very well known formula [5, Lemma 1.3],
valid if ϕ ∈ C∞(R),

ϕh(m) =
m∑

j=0

(−1)j

(
m

j

)
dm−j

dxm−j

(
ϕ(j)h

)
applied to ϕ(x) = xk. �

Lemma 3.5. Let h be a locally integrable function supported on [0,∞). For
any positive number β and positive integer k

Iβ

{
tkh(t);x

}
=

k∑
j=0

(−1)j

(
k

j

)
Γ(β + j)

Γ(β)
xk−jh(−β−j)(x) .

Proof. We proceed by induction over k. For k = 1,

Iβ {th(t);x} =
1

Γ(β)

∫ x

0
(x− t)β−1th(t)dt

= xh(−β)(x)− 1
Γ(β)

∫ x

0

(∫ t

0
(x− u)β−1h(u)du

)
dt

= xh(−β)(x)− 1
Γ(β)

∫ x

0
(x− u)βh(u)du

= xh(−β)(x)− βh(−β−1)(x) .

If the formula is true for k, then

Iβ

{
tk+1h(t);x

}
=

k∑
j=0

(−1)j

(
k

j

)
Γ(β + j)

Γ(β)
xk−jIβ+j {th(t);x}

=
k∑

j=0

(−1)j

(
k

j

)
Γ(β + j)

Γ(β)
xk+1−jh(−β−j)(x)

−
k∑

j=0

(−1)j

(
k

j

)
Γ(β + j)

Γ(β)
(β + j)xk−jh(−β−j−1)(x)

=
k+1∑
j=0

(−1)j

(
k + 1
j

)
Γ(β + j)

Γ(β)
xk+1−jh(−β−j)(x) .

�
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We begin to analyze the case of tempered distributions, by first imposing
some strong restrictions to the behavior of the distribution at infinity.

Theorem 3.6. Let f ∈ S ′. Suppose that there exists an m ∈ N such that
every m-primitive of f is a locally integrable function for large arguments
and satisfies an estimate O

(
|x|m−1

)
, as x → ∞. If f has a distributional

point value f(x0) = γ at x0 in S ′, whose order is n, then

1
2π

e.v.
〈
f̂(x), eix0x

〉
= γ (C, β) ,

for any β > k = max {m,n} .

Proof. We can assume that x0 = 0. Take h, a k-primitive of f , such that h is
a locally bounded measurable function and h(x) = O

(
|x|k−1

)
, as |x| → ∞,

and h(x) = γxk/k!+o
(
|x|k

)
as x→ 0. Set g(x) = h(x)/xk, then g ∈ L2(R)

and g is continuous at 0 with g(0) = γ/k! . Consider ĝ ∈ L2(R). Then,

(ĝ)(k) (x) = (−i)kF
{
tkg(t);x

}
= (−i)kF {h(t);x} = (−i)kĥ(x) .

Thus,

(3.5) f̂(x) = F
{
h(k)(t);x

}
= ikxkĥ(x) = (−1)kxk (ĝ)(k) (x) .

We now look at a k-primitive of f̂ . Indeed, by (3.5) and Lemma 3.4

(3.6) F (x) =
k∑

j=0

(−1)k−j k!
(k − j)!

(
k

j

)
Ij

{
tk−j ĝ(t)(t);x

}
is a k-primitive of f̂ . Let β > k and a > 0. Set β̃ = β − k. To show the
theorem, one should prove that

F1(x) :=
1

ak−1
F (ax) + (−1)kF (−x) =

2πγxk−1

(k − 1)!
+ o

(
xk−1

)
(C, β− k+ 1)

as x→∞. Therefore, we have to show that

(3.7) Iβ̃+1 {F1(t);x} =
1

Γ(β̃ + 1)

∫ x

0
(x− t)β̃F1(t)dt

=
2πγxβ

Γ(β + 1)
+ o

(
xβ

)
, as x→∞ .

Notice that

a1−kIj

{
tk−j ĝ(t); ax

}
+ (−1)kIj

{
tk−j ĝ(at);−x

}
= Ij

{
tk−j(aĝ(t) + ĝ(−t));x

}
,
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So, setting g1(t) := aĝ(at) + ĝ(−t) for t ≥ 0 and g1(t) := 0 for t < 0 we
obtain from Lemma 3.4 and (3.6)

F1(x) =
k∑

j=0

(−1)k−j k!
(k − j)!

(
k

j

)
Ij

{
tk−jg1(t);x

}
= (−1)kIk

{
tkg

(k)
1 (t);x

}
, for x > 0 ,

then, by Lemma 3.5, for x > 0

Iβ̃+1 {F1(t);x} = (−1)kIβ+1

{
tkg

(k)
1 (t);x

}
=

k∑
j=0

(−1)k−j

(
k

j

)
Γ(β + 1 + j)

Γ(β + 1)
xk−jg

(−β̃−1−j)
1 (x) ,

but

g
(−β̃−1−j)
1 (x) =

xβ̃+j

Γ(β̃ + 1 + j)

∫ ∞

−∞
ĝ(t)φβ̃+j

a

(
t

x

)
dt ∼ 2πγxβ̃+j

k!Γ(β̃ + 1 + j)
,

as x → ∞, where the last asymptotic relation holds in view of Proposition
3.2, the continuity of g at 0, and the fact g(0) = γ/k!. Therefore,

Iβ̃+1 {F1(t);x} =
2πγ xβ

k!Γ(β + 1)

k∑
j=0

(−1)k−j

(
k

j

)
Γ(β + 1 + j)

Γ(β − k + 1 + j)
+ o(xβ)

=
2πγ xβ

k!Γ(β + 1)

k∑
j=0

(
k

j

)
(−1)k−j dk

dtk

(
tβ+j

)∣∣∣∣
t=1

+ o(xβ)

=
2πγ xβ

k!Γ(β + 1)
dk

dtk

tβ k∑
j=0

(
k

j

)
(−1)k−jtj

∣∣∣∣∣∣
t=1

+ o(xβ)

=
2πγ xβ

Γ(β + 1)

(
1
k!

dk

dtk

(
tβ(t− 1)k

)∣∣∣∣
t=1

)
+ o

(
xβ

)
=

2πγ xβ

Γ(β + 1)
+ o

(
xβ

)
as x→∞ ;

hence, we have established (3.7), as required. �

Remark 3.7. It follows from the proof of the last theorem and Proposition
3.2 that (3.7) holds uniformly for a in compact subsets of (0,∞).

The next corollary follows directly from equation (3.6).

Corollary 3.8. Under the hypothesis of Theorem 3.6, then f̂ is the kth

derivative of a locally integrable function.
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Although it imposes conditions on the behavior at infinity of the tempered
distribution, we may apply Theorem 3.6 to several cases of special interest.
The next two corollaries follow directly from Theorem 3.6 (for the direct
application of Theorem 3.6 in Corollary 3.10 one should argue that it is
enough to assume c0 = 0).

Corollary 3.9. Let f be a distribution with compact support. Suppose that
f(x0) = γ in S ′ with order k. Then for each a > 0 and β > k,

lim
x→∞

1
2π

∫ ax

−x
f̂(t)eix0tdt = γ (C, β) ,

or which is the same

(3.8) lim
x→∞

1
2π

∫ ∞

−∞
φβ

a

(
t

x

)
f̂(t)eix0tdt = γ .

Moreover, relation (3.8) holds uniformly for a in compact subsets of (0,∞).

Corollary 3.10. Let f be a 2π-periodic distribution, with Fourier series∑∞
n=−∞ cne

ixn. Suppose that f(x0) = γ in S ′ with order k ≥ 1. Then for
each a > 0 and β > k,

lim
x→∞

∑
−x≤n≤ax

cne
ix0n = γ (C, β) ,

or equivalently

(3.9) lim
x→∞

∑
−x≤n≤ax

φβ
a

(n
x

)
cne

ix0n = γ .

Moreover, relation (3.9) holds uniformly for a in compact subsets of (0,∞).

As a particular case of Corollary 3.10, we obtain almost everywhere
summability of order β > 1 for Denjoy integrable functions [13, 20]. This
result extends that of Privalov (see [20, page 573]) which only considers
the symmetric series. The reader should notice that Privalov theorem is
included in the much stronger result of Marcinkiewicz [23], [46, Chapter XI,
Theorem 5.4].

Corollary 3.11. Let f be a 2π-periodic function which is Denjoy integrable
on [−π, π]. Let β > 1. If its Fourier series is

∑∞
n=−∞ cne

ixn, then we have
for almost every x0

lim
x→∞

∑
−x≤n≤ax

φβ
a

(n
x

)
cne

ix0n = f(x0) , for all a > 0 .

We now aboard the case of general behavior at infinity. For that, we need
the following two lemmas.

Lemma 3.12. Let g ∈ L2(R). Suppose that x0 /∈ supp g, then,

lim
x→∞

∫ ax

−x
ĝ(t)eix0tdt = 0 ,

uniformly for a in compact subsets of (0,∞).
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Proof. The proof is trivial, just apply Parseval’s relation and then use Riemann-
Lebesgue lemma. �

Lemma 3.13. Let f ∈ S ′. Suppose that x0 /∈ supp f and that

f(x) = O(|x|α) (C) , as |x| → ∞ ,

for some α > −1. Let m be the minimum integer such that any m-primitive
of f is locally bounded and O(|x|m+α) as |x| → ∞. Then

e.v.
〈
f(x), eix0x

〉
= 0 (C, k) ,

where k = [m+ α+ 1
2 ] + 1 ( [ · ] stands for the integral part of a number).

Proof. The proof is completely analogous to that of Theorem 3.6. We may
assume that x0 = 0. Let h be an m-primitive of f such that h is 0 in a
neighborhood of 0 and

h(x) = O(|x|m+α) as |x| → ∞.

Set g(x) = h(x)/xk, then g satisfies the hypothesis of Lemma 3.12. Define
G(x) =

∫ x
0 ĝ(t)dt; by Lemma 3.4, the following function is a (k+1)-primitive

of f̂

F (x) =
k∑

j=0

(−1)k−j k!
(k − j)!

(
k + 1
j

)
Ij

{
tk−jG(t);x

}
.

Since
1
ak
Ij

{
tk−jG(t); ax

}
− (−1)kIj

{
tk−jG(t);−x

}
= Ij

{
tk−j

∫ at

−t
ĝ(u)du;x

}
,

we can use Lemma 3.12 to conclude

1
ak
F (x)− (−1)kF (−x) =

k∑
j=0

(−1)k−j k!
(k − j)!

(
k + 1
j

)
Ij

{
o(tk−j);x

}
= o

(
xk

)
as x→∞ ,

uniformly for a on compact subsets of (0,∞). �

We now combine Theorem 3.6 and and Lemma 3.13 to obtain a bound
for the order of summability of the Fourier inversion formula of a general
tempered distribution. We remark that every tempered distribution satisfies
an estimate of type (3.10).

Theorem 3.14. Let f ∈ S ′ have the behavior at infinity

(3.10) f(x) = O(|x|α) (C,m) , as |x| → ∞ .

If f(x0) = γ in S ′ with order n, then
1

2π
e.v.

〈
f̂(x), eix0x

〉
= γ (C, k + 1),

where k = max
{
m,n, [n+ α+ 1

2 ], [m+ α+ 1
2 ]

}
.
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4. Asymptotically Homogeneous Functions

In this section we discuss some properties of asymptotically homogeneous
functions of degree 0, they are a fundamental tool in the study of summabil-
ity of distributional evaluations in the e.v. Cesàro sense [6, 9, 36]. They have
also shown to be important in the study of quasiasymptotics of distributions
[33, 34, 39]. We will apply these properties in the next section.

We say that a measurable function σ, defined in an interval of the form
[A,∞) ⊂ (0,∞), is asymptotically homogeneous of degree 0 if for each a > 0,
we have

(4.1) σ(ax) = σ(x) + o(1) as x→∞ .

Most of the properties discussed here are already known [9]; however, we
will take a different approach to them, which is based on the concept of
slowly varying functions in the sense of Karamata [30]. Suppose σ satisfies
(4.1) for each a > 0, we may assume that σ is real valued, otherwise we
consider its real and imaginary parts separately. Then L(x) = eσ(x) is
positive and measurable on [A,∞) and for each a > 0

(4.2) lim
x→∞

L(ax)
L(x)

= 1 .

Therefore, L is a slowly varying function. It is very well known that (4.2)
must hold uniformly for a in compact subsets of (0,∞) [30], so should (4.1).
Actually, if one only assumes that (4.1) holds in a set of positive measure,
then it holds for every a > 0; we will use this property implicitly sometimes
in the future. In addition, there is a very well known representation formula
for slowly varying functions [30, Theorem 1.2], which implies that there
exists a number B ≥ A such that

(4.3) σ(x) = η(x) +
∫ x

B

τ(t)
t

dt , x ≥ B ,

where η is a bounded measurable function such that η(x) → c as x → ∞
(|c| < ∞), and τ is a continuous function on [B,∞) such that τ(x) → 0 as
x→∞. Relation (4.3) implies two estimates for the growth of σ, first,

(4.4) σ(x) = o (log x) , as x→∞ ;

secondly, there are two constants A0 and A1 such that

(4.5) |σ(ax)− σ(x)| ≤ A0 |log a|+A1,

for x ≥ B and ax ≥ B. The last inequality implies the following lemma.

Lemma 4.1. Let σ be an asymptotically homogeneous function of degree 0
defined on (0,∞). Let g be a function such that g(t)(1+|log t|) is in L1(0,∞).
Suppose that at least one of the following two condition is satisfied:

i) σ is bounded in each finite subinterval of (0,∞)
ii) σ ∈ L1

loc([0,∞)) and g is bounded near the origin
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then we have that∫ ∞

0
σ(xt)g(t)dt = σ(x)

∫ ∞

0
g(t)dt+ o(1) , as x→∞ .

Proof. Choose B as in (4.3), we keep x > B. Consider∫ ∞

0
(σ(xt)− σ(x)) g(t)dt = J1(x) + J2(x)− J3(x) ,

where J1(x) =
∫∞
B/x (σ(xt)− σ(x)) g(t)dt, J2(x) =

∫ B/x
0 σ(xt)g(t)dt, and

J3(x) = σ(x)
∫ B/x
0 g(t)dt. Because of (4.5) and the assumption over g,

we can apply Lebesgue Dominated Convergence Theorem to conclude that
J1(x) = o(1) as x → ∞. That J2(x) = o(1) as x → ∞ follows easily from
the assumptions. Finally, by using (4.4), we obtain that

|J3(x)| ≤ |σ(x)|
log x+ 1− lnB

∫ ∞

0
(1 + |log t|) |g(t)|dt = o(1) , as x→∞ .

�

5. Order of point value

In this section we show that if e.v.
〈
f̂(x), eixx0

〉
= 2πγ (C, k), then

f(x0) = γ in D′ and the order of the point value is less or equal to k + 2.
We begin with a particular case which has its inspiration in Riemann’s

theorems on the formal integration of trigonometrical series [46, Chapter
IX, page 319].

Theorem 5.1. Let f be an element of S ′. Suppose that

1
2π

e.v.
〈
f̂(x), eix0x

〉
= γ (C, 0) ,

then, f(x0) = γ in S ′; moreover if F1 and F2 are any primitives of order
1 and 2 respectively, then F1 is locally integrable and F2 possesses a Peano
second order differential at x0, with γ as the second order term, i.e., F2 is
differentiable at x0 and as x→ x0

F2(x) = F2(x0) + F ′2(x0)(x− x0) +
γ

2
(x− x0)2 + o

(
(x− x0)2

)
.

Hence, the point value is at most of order 2.

Proof. We may assume that x0 = 0. We also can assume that 0 /∈ supp f̂ and
that f̂ is the derivative of a locally integrable function. Indeed, otherwise we
express f̂ = f̂2+ f̂1, where f̂2 is the derivative of a distribution with compact
support, 0 /∈ supp f̂1 and f̂1 is the first order derivative of a locally integrable
function. Observe that f2 is a C∞-function and 2πf2(0) =

〈
f̂2(x), 1

〉
=

0; consequently, f1 satisfies the hypothesis of the present theorem and f
satisfies the conclusions of the theorem if and only if f1 does.
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The hypothesis implies that if G is a primitive of f , then for each a > 0,

G(ax)−G(−x) = 2πγ + o(1) as x→∞ .

We choose G such that 0 /∈ suppG. Set σ = G−πγ, then σ is asymptotically
homogeneous of degree 0, and

(5.1) G(x) = πγ sgnx+ σ (|x|) + o(1), as |x| → ∞.

By (4.4), σ(x) = o(log x). Therefore, x−1G(x) ∈ L2(R) and x−2G(x) ∈
L1(R) ∩ L2(R). Set,

h(x) =
1

2π

∫ ∞

−∞
eixtG(t)

t2
dt ,

then h is continuous and h(x) = o(1) as |x| → ∞. We now relate h to f ,
note that h′′ = −F−1(G), so ixh′′(x) = f(x). In addition, we have that
h′(x) = iF−1

{
t−1G(t);x

}
∈ L2(R). Let F2 be the following second order

primitive of f ,

F2(x) = ixh(x)− 1
π

∫ ∞

−∞
eixtG(t)

t3
dt .

Clearly, F1(x) = F ′2(x) = ixh′(x)− ih(x), which shows that every first order
primitive of f is locally integrable. We now show that F2 is differentiable at
0,

(5.2)
F2(x)− F2(0)

x
=

1
2π

∫ ∞

−∞

G(t)
t2

(
itxeixt − 2eixt + 2

tx

)
dt ,

we can apply Lebesgue Dominated Convergence Theorem in (5.2) to con-
clude that

F ′2(0) = − i

2π

∫ ∞

−∞

G(t)
t2

dt .

We now calculate the Peano second order differential of F2 at 0.

(5.3) ∆2(x) =
F2(x)− F2(0)− xF ′2(0)

x2
=

x

2π

∫ ∞

−∞
G(t)K(xt) dt ,

where K(t) = t−3
(
iteit − 2eit + 2 + it

)
. Note that (1+ |log(t)|)K(t) belongs

to L1(R) ∩ L2(R). Changing variables in (5.3) and applying Lemma 4.1 in
combination with (5.1), we obtain that as x→ 0

∆2(x) =
sgnx
2π

∫ ∞

−∞
G

(
t

x

)
K(t) dt

=
γ

2

∫ ∞

−∞
sgn t K(t) dt+

1
2π

sgn(x)σ(|x|−1)
∫ ∞

−∞
K(t) dt+ o(1)

=
γ

2
+ o(1) ,

since
∫∞
0 (K(t) +K(−t)dt) = 0 and

∫∞
0 (K(t)−K(−t)) dt = 1. This com-

pletes the proof. �

We now use Theorem 5.1 to attack the general problem.
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Theorem 5.2. Let f ∈ S ′. Suppose that

1
2π

e. v.
〈
f̂(x), eix0x

〉
= γ (C, k) ;

then, f(x0) = γ in S ′, f is the derivative of order k+1 of a locally integrable
function and the order of f(x0) = γ is less or equal to k + 2.

Proof. As in the proof of the last theorem, we can assume that x0 = 0,
0 /∈ supp f̂ and f̂ is the derivative of order k + 1 of a locally integrable
function.

By our assumptions, we can choose G, a locally integrable function, such
that Gk+1 = f̂ , 0 /∈ supp G, and for each a > 0,

a−kG(ax) + (−1)k+1G(−x) =
2πγ
k!

xk + o
(
xk

)
as x→∞ .

Let h be the following tempered distribution

h(x) = −ixF−1
{
t−kG(t);x

}
= F−1

{(
t−kG(t)

)′
;x

}
,

note that h satisfies the hypothesis of Theorem 5.1. Therefore, there is a
locally integrable primitive h1 of h such that h1(εx) = γεx/k!+o(ε) as ε→ 0
in S ′. Set h2(x) =

∫ x
0 h1(t)dt, then, by Theorem 5.1,

(5.4) h2(x) =
γ

2k!
x2 + o

(
x2

)
as x→ 0 ,

since h′2(0) is equal to the distributional point value of h1 at 0 and h1(0) = 0
in D′. We now relate h to f . We show that

(5.5) Fk+1(x) =
k∑

j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
Ij

{
tk−jh1(t);x

}

−
k∑

j=0

(−1)k−jk!
(k − j − 1)!

(
k + 1
j

)
Ij+1

{
tk−j−1h1(t);x

}
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is a (k + 1)-primitive of f . Differentiating (5.5) (k + 1) times, we obtain,

F
(k+1)
k+1 (x) =

k∑
j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
dk+1−j

dxk+1−j

(
xk−jh1(x)− (k − j)

∫ x

0
tk−j−1h1(t)dt

)

=
k∑

j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
dk−j

dxk−j

(
xk−jh(x)

)

= −i
k∑

j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
dk−j

dxk−j

(
xk+1−jF−1

{
G(t)/tk;x

})

=
k∑

j=0

(−i)k−jk!
(k − j)!

(
k + 1
j

)
dk−j

dxk−j

(
F−1

{(
G(t)/tk

)(k+1−j)
;x

})

= F−1


k+1∑
j=0

(
k + 1
j

)
dj

dtj
(tk)

(
G(t)/tk

)(k+1−j)
;x


= F−1

{
G(k+1)(t);x

}
= F−1

{
f̂(t);x

}
= f(x)

Therefore, Fk+1 is a primitive of order k + 1 of f . Since h1 is locally inte-
grable, so is Fk+1. We integrate (5.5) to obtain a continuous (k+2)-primitive
of f , given by

Fk+2(x) =
k∑

j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
Ij

{
tk−jh2(t)− (k − j)

∫ t

0
sk−j−1h2(s)ds;x

}

+
k∑

j=0

(−1)k−jk!
(k − j − 1)!

(
k + 1
j

)
Ij+1

{
(k − j − 1)

∫ t

0
sk−j−2h2(s)ds− tk−j−1h2(t);x

}
.

By using (5.4), we can conclude that

Fk+2(x) =
γ

2k!

k∑
j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
2Ij

{
tk+2−j ;x

}
(k + 2− j)(k + 1− j)

+ o
(
xk+2

)

=
γ

k!
xk+2

k∑
j=0

(−1)k−jk!
(k − j)!

(
k + 1
j

)
(k − j)!
(k + 2)!

+ o
(
xk+2

)

=
γ

k!(k + 2)
xk+2

k∑
j=0

(−1)k−j

(
k

j

)
1

(k + 1− j)
+ o

(
xk+2

)
=

γ

k!(k + 2)
xk+2(−1)k

∫ 1

0
(t− 1)kdt+ o(xk+2)

=
γ

(k + 2)!
xk+2 + o

(
xk+2

)
as x→ 0,
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this shows that f(0) = γ in S ′ and the order of the point value is at most
k + 2. �

6. Symmetric point values

This section is devoted to the study of symmetric point values of distri-
butions. They are studied by means of the symmetric part of a distribution
about at given point x = x0, that is, the distribution

(6.1) χf
x0

(x) :=
f(x+ x0) + f(x0 − x)

2

Notice that χf
x0 is an even distribution.

Definition 6.1. Let f ∈ D′ and x0 ∈ R. We say that f has a (distributional)
symmetric point value γ at x = x0 if its symmetric part about x0 has a point
value at x = 0, that is, χf

x0(0) = γ in D′. In this case we write fsym(x0) = γ
in D′.

Of course, the existence of the symmetric value at x0 is equivalent to have

(6.2) lim
ε→0+

1
2ε

〈
f(x), φ

(
x− x0

ε

)
+ φ

(
x0 − x

ε

)〉
= γ

∫ ∞

−∞
φ(x)dx ,

for each φ ∈ D′. We may use  Lojasiewicz characterization of distributional
point values (2.4) to characterize symmetric point values.

Theorem 6.2. Let f ∈ D′ and x0 ∈ R. We have that fsym(x0) = γ in
D′ if and only if there exists n ∈ N and an n-primitive F of f such that
F (x0 + x) + (−1)nF (x0 − x) is locally integrable in a neighborhood of the
origin and

(6.3) F (x0 + h) + (−1)nF (x0 − h) = 2γ
hn

n!
+ o(hn), h→ 0 .

Most of the results for symmetric point values can be obtained from those
of distributional point values. Let us discuss an example.

Example 6.3. Let f ∈ D′ have a distributional point value γ at x0. Let U
be a harmonic representation [1] of f on =mz > 0, that is, U(z) is harmonic
for =mz > 0 and limy→0+ U(x+ iy) = f(x) in the weak topology of D′. It is
shown in [8] by studying the Poisson kernel and in [34] by Fourier transform
methods that

lim
z→x0

U(z) = γ, non-tangentially from the upper half-plane.

We can use this result applied to the symmetric distribution to obtain a
radial version of this result in the case of symmetric point values. Indeed,
suppose now that fsym(x0) = γ in D′. If U is a harmonic representation of
f . Then U1(z) = (U(x0 + z) +U(x0 − z̄))/2 is a harmonic representation of



ORDER OF SUMMABILITY OF THE FOURIER INVERSION FORMULA 21

χf
x0 , hence U1(z) = γ + o(1) as z approaches 0 from the upper half-plane in

a non-tangential manner. Therefore,

lim
y→0+

U(x0 + iy) = lim
y→0+

U1(iy) = γ .

In particular, if f is a 2π-periodic distribution with sines and cosines series
f(x) = a0/2 +

∑∞
n=1 an cosnx+ bn sinnx, then

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (A) ,

where (A) stands for Abel summability [15]. This recovers the main result
from [43].

We say that fsym(x0) = γ in S ′ if χf
x0 ∈ S ′ and (6.2) holds for each φ ∈ S.

It is then obvious that if χf
x0 ∈ S ′, we have that fsym(x0) = γ in D′ if and

only if fsym(x0) = γ in S ′ .
In the same manner as for distributional point values, we define the order

of symmetric point values.

Definition 6.4. Let f ∈ D′. Suppose that χf
x0 ∈ S ′. We say that f has a

(distributional) symmetric point value γ at x0 in S ′ of order n, and write
fsym(x0) = γ in S ′ with order n, if n is the minimum integer such that there
exists a distribution F such that F (n) = f , F (x0 + x) + (−1)nF (x0 − x) is
a locally bounded measurable function of polynomial growth at infinity and
F satisfies (6.3).

We can also describe distributional symmetric point values in terms of de
la Vallée Poussin derivatives [32], [46, Chapter XI]. Given a distribution f
define its jump distribution at x = x0 by

(6.4) ψf
x0

(x) =
f(x0 + x)− f(x0 − x)

2
.

Then, in the case that n is even in Theorem 6.2, we obtain that χF
x0

(h) =
γhn/n! + o(hn); but on the other hand when n is odd ψF

x0
(h) = γhn/n! +

o(hn). Let now F1 be an arbitrary n-primitive of f , then we obtain that F1

is de la Vallée Poussin n-differentiable at x = x0, that is, either

χF1
x0

(h) = a0 + a2h
2 + · · ·+ γhn/n! + o(hn), as h→ 0 ,

for some constants a0, a2 . . . , when n is even, or

ψF1
x0

(h) = b1h+ b3h
3 + · · ·+ γhn/n! + o(hn), as h→ 0 ,

for some constants b1, b3 . . . , when n is odd.
Our main goal in this section is to formulate and solve the problem of (C)

symmetric summability for tempered distributions. We will do this with the
aid of symmetric point values. Let us first discuss a known case, namely,
Fourier series.
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Example 6.5. Suppose that f is a 2π-periodic distribution with sines and
cosines Fourier series f(x) = a0/2 +

∑∞
n=1(an cosnx+ bn sinnx). Then the

solution to the (C) problem (see the Introduction) can be formulated in
terms of symmetric point values. Indeed, [9, Theorem 6.14.4], [16],

f(x) =
a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C)

if and only if fsym(x0) = γ in D′. In [14, 45], using the language of de la
Vallée Poussin derivatives the order of summability is estimated upon knowl-
edge of the order of the point value; the opposite problem was investigated
in [46, Chapter XI, Theorem 2.1] (the original source is [45]).

The natural extension of the Hardy-Littlewood (C) summability problem
is then to characterize symmetric point values of tempered distributions by
summability of the Fourier transform. In order to characterize symmetric
point values in terms of the Fourier transform, we need to choose the correct
notion of summability. It turns out the right notion is that of principal value
distributional evaluations in the (C) sense, which we now proceed to define.

Definition 6.6. Let g ∈ D′, φ ∈ C∞(R) and β ≥ 0. We say that the
evaluation 〈g (x) , φ (x)〉 exists in the p.v. Cesàro sense (at order β), and
write

(6.5) p.v. 〈g (x) , φ (x)〉 = γ (C, β) ,

if for some primitive G of gφ we have

lim
x→∞

(G(x)−G(−x)) = γ (C, β) .

If (6.5) exits, we also say that the principal value of the evaluation exists in
the (C, β) sense.

Suppose that g is locally integrable, then we write (6.5) as

(6.6) p.v.
∫ ∞

−∞
g (x)φ (x) dx = γ (C, β) .

and we say that the principal value of the integral exists. Notice that (6.6)
exactly means

lim
x→∞

∫ x

−x
g(t)φ(t)

(
1− |t|

x

)β

dt = γ .

For numerical series, let {cn}∞n=−∞ be a sequence of complex numbers, we
say that the principal value of the series exits in the (C, β) sense and write

(6.7) p.v.
∞∑

n=−∞
cnφ(n) = γ (C, β) ,
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if

c0 +
∞∑

n=1

(cn + c−n)φ(n) = γ (C, β) ,

where in the last equation (C, β) stands for Cesàro summability but in the
sense of numerical series [15]. Because of the equivalence between Cesàro
means and Riesz typical means [15, 18, 28], it means that

lim
x→∞

∑
−x<n<x

cnφ(n)
(

1− |n|
x

)β

= γ ;

thus, (6.7) is equivalent to have (6.5) with g(x) =
∑∞

n=−∞ cnδ(x− n).
We easily obtain a version of Theorem 3.6 for symmetric point values.

Theorem 6.7. Let f ∈ D′. Suppose that there exists an m ∈ N, such that
every m-primitive of χf

x0 is a locally bounded measurable function for large
arguments and satisfies an estimate O

(
|x|m−1

)
, as x→∞. If fsym(x0) = γ

in S ′ with order n, then
1

2π
p.v.

〈
χ̂f

x0
(x), 1

〉
= γ (C, β) ,

for any β > k = max {m,n} . When f ∈ S ′, we obtain
1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C, β) ,

for any β > k = max {m,n} .

Proof. Our hypotheses imply that χf
x0 ∈ S ′, thus we can apply Theorem 3.6

to χf
x0 . Since, χf

x0(0) = γ in S ′ with order n, then

e.v.
〈
χ̂f

x0
(x), 1

〉
= 2πγ (C, β) ,

for any β > k = max {m,n}, in particular the last relation holds in the p.v.
sense. If we assume that f ∈ S ′, then

χ̂f
x0

(x) =
1
2

(
eix0xf̂(x) + e−ix0xf̂(−x)

)
,

so, if F is first order primitive of eix0xf̂(x), then G(x) = (F (x)− F (−x))/2
is a first order primitive of χ̂f

x0(x), and hence

lim
x→∞

(G(x)−G(−x)) = lim
x→∞

(F (x)− F (−x)) = 2πγ (C, β) .

�

When f has compact support we obtain the following result.

Corollary 6.8. Let f be a distribution with compact support. Suppose that
fsym(x0) = γ in S ′ with order k. Then for any β > k,

1
2π

p.v.
∫ ∞

−∞
f̂(t)eix0tdt = γ (C, β) ,
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or which is the same

lim
x→∞

1
2π

∫ x

−x

(
1− |t|

x

)β

f̂(t)eix0tdt = γ .

For Fourier series, we obtain the result of A. Zygmund [45] mentioned
in Example 6.5. Obviously, our language differers from that of Zygmund’s
original statement.

Corollary 6.9. Let f be a 2π-periodic distribution, with sines and cosines
Fourier series

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .

Suppose that fsym(x0) = γ in S ′ with order k ≥ 0. Then for any β > k,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C, β) ,

or equivalently

lim
x→∞

a0

2
+

∑
0<n<x

(
1− |n|

x

)β

(an cosnx0 + bn sinnx0) = γ .

Proof. If k ≥ 1, we can assume that a0 = 0 and proceed to apply Theorem
6.7. For k = 0, then f is a bounded 2π-periodic function which is continuous
at x0, and hence the conclusion follows from the classical result [19, 46]. �

As in the proof of Theorem 6.7, one can apply the result for distributional
point values, Theorem 3.14, to the distribution χf

x0 to easily obtain the next
bound for the order of summability in the case of the principal value of
Fourier inversion formula for general tempered distributions.

Theorem 6.10. Let f ∈ D′. Suppose that

χf
x0

(x) = O(|x|α) (C,m) , as |x| → ∞ .

If fsym(x0) = γ in S ′ with order n, then

1
2π

p.v.
〈
χ̂f

x0
(x), 1

〉
= γ (C, k + 1) ,

where k = max
{
m,n, [n+ α+ 1

2 ], [m+ α+ 1
2 ]

}
. If we assume f ∈ S ′, then

we obtain
1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C, k + 1) .

Finally, we estimate the order of the symmetric point value in terms of
the order of summability of the principal value Fourier inversion formula.
We need the following lemma.
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Lemma 6.11. Let g ∈ D′ be an even distribution, that is, g(−x) = g(x),
then

(6.8) e.v. 〈g(x), 1〉 = γ (C, β)

if and only if

(6.9) p.v. 〈g(x), 1〉 = γ (C, β) .

In fact the above relations are equivalent to

(6.10) lim
x→∞

G(x) =
γ

2
(C, β) ,

where G is the unique odd first order primitive of g.

Proof. That (6.9) and (6.10) are equivalent is clear. Relation (6.8) obviously
implies (6.9). We now show that (6.10) implies (6.8). Let G be the odd first
order primitive of g, so we have that G(x) = γ/2 + o(1) (C, β) as x → ∞,
hence we also have that G(ax) = γ/2 + o(1) (C, β) as x→∞, and thus for
each a > 0

lim
x→∞

(G(ax)−G(−x)) = 2 lim
x→∞

(G(ax) +G(x)) = γ (C, β) .

�

Therefore, on combining Lemma 6.11 and Theorem 5.2, we immediately
obtain the following result. Notice that, as a corollary, we obtain the classical
result [46, Chapter XI, Theorem 2.1 ] for Fourier series.

Theorem 6.12. Let f ∈ S ′. Suppose that

1
2π

p. v.
〈
f̂(x), eix0x

〉
= γ (C, k) ,

then, fsym(x0) = γ in S ′, χf
x0 is the derivative of order k + 1 of a locally

integrable function and the order of fsym(x0) is less or equal to k + 2.

The solution of the (C) symmetric problem for “trigonometric integrals”
of distributions is summarized in the last theorem of this section, which ex-
tends Hardy and Littlewood characterization [16] of (symmetric) (C) summa-
bility at a point from Fourier series to general tempered distributions.

Theorem 6.13. Let f ∈ D′. Suppose that χf
x0 ∈ S ′. Then

(6.11)
1

2π
p. v.

〈
χ̂f

x0
, 1

〉
= γ (C)

if and only if fsym(x0) = γ in D′. If in addition f ∈ S ′, then (6.11) is the
same as

1
2π

p. v.
〈
f̂(x), eix0x

〉
= γ (C) .
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7. The order of jumps and symmetric jumps

In this last section we study the order of summability in several charac-
terizations the author have obtained for the jump behavior and symmetric
jump behavior of distributions [35, 36, 37, 10]. Let us define these two
concepts.

Definition 7.1. A distribution f ∈ D′ is said to have a distributional jump
behavior (or jump behavior) at x = x0 ∈ R if it satisfies the following
distributional asymptotic relation

(7.1) f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) ,

as ε → 0+ in D′, where H is the Heaviside function, i.e., the characteristic
function of (0,∞), and γ± are constants. The jump (or saltus) of f at x = x0

is defined then as the number [f ]x=x0
= γ+ − γ− .

The meaning of (7.1) is in the weak topology of D′, in the sense that for
each φ ∈ D,

(7.2) lim
ε→0+

〈f(x0 + εx), φ(x)〉 = γ−

∫ 0

−∞
φ(x) dx+ γ+

∫ ∞

0
φ(x) dx .

If f ∈ S ′, then it is shown in [39] that (7.2) remains true for all φ ∈ S ′.
Furthermore, from the results of [39], a structural characterization of the
jump behavior of distributions can be given explicitly, that is, a distribution
f ∈ D′ has the jump behavior (7.1) if and only if there exist n ∈ N and a
function F , locally integrable on a neighborhood of x0, such that F (n) = f
near x0 and

(7.3) lim
x→x±0

n!F (x)
(x− x0)n

= γ± .

So we can define the order of the jump behavior in S ′ of a tempered distri-
bution.

Definition 7.2. Let f ∈ S ′. Suppose that f has jump behavior at x0. The
order of the jump behavior in S ′ is defined as the minimum integer n such
that there exists a locally bounded measurable function F of polynomial
growth at infinity satisfying F (n) = f and (7.3).

Recall the definition of the jump distribution of f at x = x0, it is given
by (6.4).

Definition 7.3. A distribution f ∈ D′ is said to have a distributional sym-
metric jump behavior (or symmetric jump behavior) at x = x0 ∈ R if the
jump distribution ψf

x0 has jump behavior at 0 . In such a case, we define the
symmetric jump (or saltus) of f at x = x0 as the number [f ]x=x0

=
[
ψf

x0

]
x=0

. We say that f has a jump behavior in S ′ with order n if ψf
x0 ∈ S ′ and it

has a jump behavior at x = 0 of order n.
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Since the jump distribution is odd, it is easy to see that the jump behavior
of the jump distribution in Definition 7.3 must be of the form

ψx0 (εx) =
1
2

[f ]x=x0
sgnx+ o(1) as ε→ 0+ in D′ ,

where sgnx is the signum function, i.e., H(x) − H(−x) . Notice that a
distribution f has jump behavior (7.1) at x = x0 if and only if it has sym-
metric point value and symmetric jump behavior at x = x0 and fsym(x0) =
(γ− + γ+)/2 and [f ]x=x0 = γ+ − γ−.

We now add information about the order to the characterization of the
jump behavior given in [35, 36].

Theorem 7.4. Let f ∈ S ′ have the distributional jump behavior (7.1) at
x = x0 of order n. Suppose that there exists an m ∈ N such that every
m-primitive of f is a locally integrable function for large arguments and
satisfies an estimate O

(
|x|m−1

)
, as x→∞. Let F be a fist order primitive

of eix0xf̂ , then if β > k = max {m,n},

1
2π

lim
x→∞

(F (ax)− F (−x)) = fsym(x0) +
[f ]x=x0

2πi
log a (C, β) ,

uniformly for a in compact subsets of (0,∞).

Proof. Define the distribution

v = −θ[−1,0] + θ[0,1] .

Then the distribution

h(x) = f(x)− 1
2

[f ]x=0 v(x− x0)

satisfies the hypothesis of Theorem 3.6 and h(x0) = fsym(x0) in S ′ with
order n. Therefore,

e.v.
〈
ĥ(x), eix0x

〉
= 2πfsym(x0) (C, β),

whenever β > k = max {m,n}. Observe that

eix0xF {v(t− x0);x} = v̂(x) =
2− 2 cosx

ix
.

Let G be a first order primitive of eix0xĥ(x), hence

F (x) = G(x) +
[f ]x=x0

i

∫ x

0

1− cos t
t

dt
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satisfies F ′(x) = eix0xf̂(x). Then, we obtain as x→∞

F (ax)− F (−x) = G(ax)−G(−x) +
[f ]x=x0

i

∫ ax

−x

1− cos t
t

dt

= 2πfsym(x0) +
[f ]x=x0

i

∫ ax

x

1− cos t
t

dt+ o(1)

= 2πfsym(x0) +
[f ]x=x0

i
log a+ o(1) (C, β) .

�

We obtain immediately form Theorem 7.4 the corresponding results for
compactly supported distributions and Fourier series. Here we only state the
result for Fourier series and leave the corresponding statement for compactly
supported distributions to the reader.

Corollary 7.5. Let f be a 2π-periodic distribution, with Fourier series∑∞
n=−∞ cne

ixn. Suppose that f has the distributional jump behavior (7.1)
at x = x0 in S ′ with order k ≥ 1. Then for each a > 0 and β > k,

lim
x→∞

∑
−x≤n≤ax

cne
ix0n = fsym(x0) +

[f ]x=x0

2πi
log a (C, β) ,

or equivalently

(7.4) lim
x→∞

∑
−x≤n≤ax

φβ
a

(n
x

)
cne

ix0n = fsym(x0) +
[f ]x=x0

2πi
log a .

Moreover, relation (7.4) holds uniformly for a in compact subsets of (0,∞).

Using the same procedure as in the proof of Theorem 7.4, we obtain from
Theorem 3.14 and Theorem 5.2.

Theorem 7.6. Let f ∈ S ′ have the distributional jump behavior (7.1) at
x = x0 of order n. Suppose that

f(x) = O(|x|α) (C,m) , as |x| → ∞ .

Let F be a first order primitive of eix0xf̂(x). Then we have, uniformly for
a in compact subset of (0,∞),

1
2π

lim
x→∞

(F (ax)− F (−x)) = fsym(x0) +
[f ]x=x0

2πi
log a (C, k + 1) ,

where k = max
{
m,n, [n+ α+ 1

2 ], [m+ α+ 1
2 ]

}
.

Theorem 7.7. Let f ∈ S ′. Let F be a first order primitive of f . Suppose
that for some constants d1 and d2

1
2π

lim
x→∞

(F (ax)− F (−x)) = d1 + d2 log a (C, k) ,

for a in a subset of positive measure of the interval (0,∞). Then, f has the
distributional jump behavior (7.1) at x0 with constants γ± = d1± iπd2, f is
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the derivative of order k+ 1 of a locally integrable function and the order of
the jump behavior is less or equal to k + 2.

It is possible to formulate analogous results for the symmetric jump be-
havior in terms of the jump distribution; however, we choose only to do it
for the case of Fourier series.

Theorem 7.8. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .

Suppose that f has a symmetric jump behavior at x = x0 of order k ≥ 1.
Then for any β > k

lim
x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = − [f ]x=x0

π
log a (C, β) ,

uniformly for a in compact subsets of [1,∞).

Proof. The jump distribution has Fourier transform

ψf
x0

(x) = −
∞∑

n=1

(an sinnx0 − bn cosnx0) sinnx ,

it has Fourier transform

ψ̂f
x0

(x) = πi
∞∑

n=1

(an sinnx0 − bn cosnx0) (δ (x− n)− δ (x+ n)) .

Therefore,
Ψ(x) = πi

∑
1≤n<|x|

(an sinnx0 − bn cosnx0)

is a first order primitive of the ψ̂f
x0 . Since it has a jump behavior at x = 0

with jump [f ]x=x0 , Theorem 7.4 implies the result. �

Reasoning as in Theorem 7.8, we can prove using Theorem 7.7 the fol-
lowing result.

Theorem 7.9. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) .

Suppose that

lim
x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = d log a (C, k) ,

for a in a subset of positive measure of the interval [1,∞). Then, f has the
distributional symmetric jump behavior at x0 with jump [f ]x=x0 = −πd, ψf

x0

is the derivative of order k+ 1 of a locally integrable function and the order
of the jump behavior is less or equal to k + 2.
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We may use Theorems 7.8, Theorem 7.9 and Corollary 6.9 to characterize
the distributional jump behavior of a 2π-periodic distribution from its sines
and cosines Fourier series and its conjugate series.

Theorem 7.10. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) .

Then f has distributional jump behavior at x = x0 if and only if there exists
β ≥ 0 such that for some constants d1 and d2

a0

2
+

∞∑
n=0

(an cosnx0 + bn sinnx0) = d1 (C, β) ,

and
lim

x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = d2 log a (C, β) ,

for a in a subset of positive measure of the interval [1,∞). In such case
fsym(x0) = d1 and [f ]x=x0 = −πd2.

The last results we want to comment are in relation with the classical
formula of F. Lukács for the jump of a function [22, 24, 25]. Indeed, exactly
the same arguments given in [37] now in combination with the information
about the order from Theorem 7.4, Corollary 7.5 and Theorem 7.6 yield the
following series of results.

Theorem 7.11. Let f ∈ S ′ have the distributional jump behavior at x = x0

of order n. Suppose that there exists a m ∈ N, such that every m-primitive of
f is a locally integrable function for large arguments and satisfies an estimate
O

(
|x|m−1

)
, as x → ∞. Then for any decomposition f̂ = f̂− + f̂+, where

supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆ [0,∞), and for any β > max {n,m}, we
have that the following convolutions are locally bounded functions and(

e±ix0tf̂±(±t) ∗ tβ+
)

(x) ∼ ±[f ]x=x0

|x|β

i
log x , as x→∞ ,

in the ordinary sense.

Theorem 7.12. Let f be a 2π-periodic distribution, with Fourier series∑∞
n=−∞ cne

ixn. Suppose it has distributional jump behavior at x = x0 of
order k ≥ 1. Then for any β > k

lim
x→∞

1
log x

∑
0≤n≤x

c±ne
±inx0

(
1− n

x

)β
= ± [f ]x=x0

2πi
.

Theorem 7.13. Let f ∈ S ′ have the distributional jump behavior at x = x0

of order n. Suppose that

f(x) = O(|x|α) (C,m) , as |x| → ∞ .
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Then for any decomposition f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞, 0] and
supp f̂+ ⊆ [0,∞). We have that the following convolutions are locally
bounded functions and(

e±ix0tf̂±(±t) ∗ tk+1
+

)
(x) ∼ ±[f ]x=x0

|x|k+1

i
log x , as x→∞ ,

in the ordinary sense, where k = max
{
m,n, [n+ α+ 1

2 ], [m+ α+ 1
2 ]

}
.

For the case of symmetric jumps of Fourier series we have the following
result.

Theorem 7.14. Let f ∈ S ′ be a 2π-periodic distribution having the follow-
ing Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .

If f has a symmetric jump behavior at x = x0 of order k ≥ 1, then for any
β > k

lim
x→∞

1
log x

∞∑
n=1

(an sinnx0 − bn cosnx0)
(

1− n

x

)β
= − 1

π
[f ]x=x0

.
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[11] Fejér, L., Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, J.
Reine Angew. Math., 142 (1913), 165–188.
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[39] Vindas, J. and Pilipović, S., Structural theorems for quasiasymptotics of distributions
at the origin, Math. Nachr., 282 (2009), 1584–1599.

[40] Vladimirov, V. S., Drozhzhinov, Yu. N. and Zavialov, B. I., Tauberian Theorems for
Generalized Functions, Kluwer Academic Publishers, Dordrecht, 1988.

[41] Vladimirov, V. S., Methods of the Theory of Generalized Functions, Taylor & Francis,
London, 2002.

[42] Walter, G., Pointwise convergence of distribution expansions, Studia Math., 26
(1966), 143–154.

[43] Walter, G., Fourier series and analytic representation of distributions, SIAM Review,
12 (1970), 272–276.

[44] Walter, G. and Shen, X., Wavelets and other orthogonal systems, second edition,
Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, 2001.
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