1,133 research outputs found

    Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

    Get PDF
    This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs.United States. Office of Naval Research (Grant N00014-12-1-0959)United States. Office of Naval Research (Grant N0014-16-1-2230)United States. National Aeronautics and Space Administration (Award NNX14AH11A)United States. Army Research Office (Contract W911NF-13-D-0001

    Precise measurement of the top quark mass in the dilepton channel at D0

    Get PDF
    We measure the top quark mass (mt) in ppbar collisions at a center of mass energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events, where l denotes an electron, a muon, or a tau that decays leptonically. The data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0 detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat) +- 2.4(syst) GeV, which is in agreement with the current world average mt = 173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the dilepton channel.Comment: 7 pages, 4 figure

    Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We report a search for a narrow ttbar resonance that decays into a lepton+jets final state based on an integrated luminosity of 5.3/fb of proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0 Collaboration at the Fermilab Tevatron Collider. We set upper limits on the production cross section of such a resonance multiplied by its branching fraction to ttbar which we compare to predictions for a leptophobic topcolor Z' boson. We exclude such a resonance at the 95% confidence level for masses below 835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter

    Measurement of the lifetime of the B_c meson in the semileptonic decay channel

    Get PDF
    Using approximately 1.3 fb-1 of data collected by the D0 detector between 2002 and 2006, we measure the lifetime of the B_c meson in the B_c -> J/psi mu nu X final state. A simultaneous unbinned likelihood fit to the J/\psi+mu invariant mass and lifetime distributions yields a signal of 881 +/- 80 (stat) candidates and a lifetime measurement of \tau(B_c) = 0.448 +0.038 -0.036 (stat) +/- 0.032 (syst) ps.Comment: 7 pages, 2 figures, submitted to Phys. Rev. Let

    Measurement of the W boson mass

    Get PDF
    We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1 of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> ev candidate events, we measure M_W = 80.401 +- 0.043 GeV. This is the most precise measurement from a single experiment.Comment: As published in PR

    Search for new fermions ("quirks") at the Fermilab Tevatron Collider

    Get PDF
    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.42.4 fb1^{-1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron ppˉp\bar{p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like {\it SU(N)} sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 ~GeV for the mass of a charged quirk with strong dynamics scale Λ\Lambda in the range from 10 keV to 1 MeV.Comment: submitted to Phys. Rev. Letter
    corecore