329 research outputs found
Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype
Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression
Identification of a novel zinc metalloprotease through a global analysis of clostridium difficile extracellular proteins
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis
Role of electromagnetically induced transparency in resonant four-wave-mixing schemes.
Published versio
Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage
Objectives: Antibiotic-associated diarrhoea (AAD) caused by C. difficile is one of the most common nosocomial infections, however, little is known about infections related to antimicrobial use for pathogens other than C. difficile. We therefore aimed to provide insight into other bacterial causes of AAD, and how infection with these pathogens causes damage in the dysbiotic gut.
Methods: Clinical isolates from C. difficile-negative AAD patients were whole genome sequenced for in silico analysis of potential virulence factors and antimicrobial resistance determinants. A mouse model of infection was developed to assess the capacity of these isolates to cause gastrointestinal damage, which was analysed by studying specific markers in the gastrointestinal mucosa of infected mice.
Results: Several bacterial pathogens were isolated from patients with C. difficile-negative AAD. Each isolate showed the potential for virulence based on encoded virulence factors, as well as most showing antimicrobial resistance in vitro. Isolates of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were tested in the mouse model of infection, inducing damage primarily in the small intestine, affecting adherens junction integrity, cellular polarity, and cellular proliferation.
Conclusions: Several pathogens of clinical importance other than C. difficile are able to cause gastrointestinal infection following antimicrobial-mediated dysbiosis. The virulence potential and multidrug resistance identified in these isolates illuminates the importance of further diagnostic screening in cases of C. difficile-negative AAD
DNA repair modulates the vulnerability of the developing brain to alkylating agents
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag[superscript −/−]) or O6-methylguanine methyltransferase (Mgmt[superscript −/−]), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt−/− neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag[superscript −/−] neurons were for the most part significantly less sensitive than wild type or Mgmt[superscript −/−] neurons to MAM and HN2. Aag[superscript −/−] neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt[superscript −/−] mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag[superscript −/−] or MGMT-overexpressing (Mgmt[superscript Tg+]) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt[superscript Tg+] mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.United States. Army Medical Research and Materiel Command (Contract/Grant/Intergovernmental Project Order DAMD 17-98-1-8625)United States. National Institutes of Health (grants CA075576)United States. National Institutes of Health (RO1 C63193)United States. National Institutes of Health (P30 CA043703
Structural characterization of Clostridium sordellii spores of diverse human, animal, and environmental origin and comparison to Clostridium difficile spores
© 2017 Rabi et al. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species
Genetic Organisation, Mobility and Predicted Functions of Genes on Integrated, Mobile Genetic Elements in Sequenced Strains of Clostridium difficile
Background: Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn), Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7), of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.Results: CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.Conclusions: The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C. difficile with its human host
Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria
Clostridium difficile (C. difficile) is a problematic Gram positive bacterial pathogen causing moderate to severe gastrointestinal infections. Based on a lead binaphthyl-tripeptide dicationic antimicrobial, novel mono-, di- and tri-peptidomimetic analogues targeting C. difficile were designed and synthesized incorporating one, two or three d-configured cationic amino acid residues, with a common 1,2,3-triazole ester isostere at the C-terminus. Copper- and ruthenium-click chemistry facilitated the generation of a 46 compound library for in vitro bioactivity assays, with structure-activity trends over the largest compound subset revealing a clear advantage to triazole-substitution with a linear or branched hydrophobic group. The most active compounds were dicationic-dipeptides where the triazole was substituted with a 4- or 5-cyclohexylmethyl or 4,5-diphenyl moiety, providing MICs of 4 μg mL-1 against three human isolates of C. difficile. Further biological screening revealed significant antimicrobial activity for several compounds against other common bacterial pathogens, both Gram positive and negative, including S. aureus (MICs ≥2 μg mL-1), S. pneumoniae (MICs ≥1 μg mL-1), E. coli (MICs ≥4 μg mL-1), A. baumannii (MICs ≥4 μg mL-1) and vancomycin-resistant E. faecalis (MICs ≥4 μg mL-1)
Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB
Extraction and sensitive detection of toxins A and B from the human pathogen Clostridium difficile in 40 seconds using microwave-accelerated metal-enhanced fluorescence.
Clostridium difficile is the primary cause of antibiotic associated diarrhea in humans and is a significant cause of morbidity and mortality. Thus the rapid and accurate identification of this pathogen in clinical samples, such as feces, is a key step in reducing the devastating impact of this disease. The bacterium produces two toxins, A and B, which are thought to be responsible for the majority of the pathology associated with the disease, although the relative contribution of each is currently a subject of debate. For this reason we have developed a rapid detection assay based on microwave-accelerated metal-enhanced fluorescence which is capable of detecting the presence of 10 bacteria in unprocessed human feces within 40 seconds. These promising results suggest that this prototype biosensor has the potential to be developed into a rapid, point of care, real time diagnostic assay for C. difficile
- …
