5,685 research outputs found

    Evolution of the structure of amorphous ice - from low-density amorphous (LDA) through high-density amorphous (HDA) to very high-density amorphous (VHDA) ice

    Full text link
    We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of Ih ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice (LDA) at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.Comment: 11 pages, 12 postscript figures. To be published in The Journal of Chemical Physic

    Results of a 0.03- scale aerodynamic characteristics investigation of Boeing 747 carrier (model no. AX 1319 I-1) mated with a space shuttle orbiter (model 45-0) conducted in the Boeing transonic wind tunnel (CA5), volume 1

    Get PDF
    The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included

    Metastability of life

    Get PDF
    The physical idea of the natural origin of diseases and deaths has been presented. The fundamental microscopical reason is the destruction of any metastable state by thermal activation of a nucleus of a nonreversable change. On the basis of this idea the quantitative theory of age dependence of death probability has been constructed. The obtained simple Death Laws are very accurately fulfilled almost for all known diseases.Comment: 3 pages, 4 figure

    Manganese availability is negatively associated with carbon storage in northern coniferous forest humus layers

    Get PDF
    Carbon sequestration below ground depends on organic matter input and decomposition, but regulatory bottlenecks remain unclear. The relative importance of plant production, climate and edaphic factors has to be elucidated to better predict carbon storage in forests. In Swedish forest soil inventory data from across the entire boreal latitudinal range (n = 2378), the concentration of exchangeable manganese was singled out as the strongest predictor (R-2 = 0.26) of carbon storage in the extensive organic horizon (mor layer), which accounts for one third of the total below ground carbon. In comparison, established ecosystem models applied on the same data have failed to predict carbon stocks (R-2 <0.05), and in our study manganese availability overshadowed both litter production and climatic factors. We also identified exchangeable potassium as an additional strong predictor, however strongly correlated with manganese. The negative correlation between manganese and carbon highlights the importance of Mn-peroxidases in oxidative decomposition of recalcitrant organic matter. The results support the idea that the fungus-driven decomposition could be a critical factor regulating humus carbon accumulation in boreal forests, as Mn-peroxidases are specifically produced by basidiomycetes.Peer reviewe

    Structure and dielectric properties of polar fluids with extended dipoles: results from numerical simulations

    Full text link
    The strengths and short-comings of the point-dipole model for polar fluids of spherical molecules are illustrated by considering the physically more relevant case of extended dipoles formed by two opposite charges ±q\pm q separated by a distance dd (dipole moment μ=qd\mu=q d). Extensive Molecular Dynamics simulations on a high density dipolar fluid are used to analyse the dependence of the pair structure, dielectric constant \eps and dynamics as a function of the ratio d/σd/\sigma (\sig is the molecular diameter), for a fixed dipole moment μ\mu. The point dipole model is found to agree well with the extended dipole model up to d/\sig \simeq 0.3. Beyond that ratio, \eps shows a non-trivial variation with d/\sig. When d/\sig>0.6, a transition is observed towards a hexagonal columnar phase; the corresponding value of the dipole moment, \mu^2/\sig^3 k T=3, is found to be substantially lower than the value of the point dipole required to drive a similar transition.Comment: 10 pages, 11 figures; Paper submitted to Molecular Physic

    Use of high throughput sequencing to observe genome dynamics at a single cell level

    Full text link
    With the development of high throughput sequencing technology, it becomes possible to directly analyze mutation distribution in a genome-wide fashion, dissociating mutation rate measurements from the traditional underlying assumptions. Here, we sequenced several genomes of Escherichia coli from colonies obtained after chemical mutagenesis and observed a strikingly nonrandom distribution of the induced mutations. These include long stretches of exclusively G to A or C to T transitions along the genome and orders of magnitude intra- and inter-genomic differences in mutation density. Whereas most of these observations can be explained by the known features of enzymatic processes, the others could reflect stochasticity in the molecular processes at the single-cell level. Our results demonstrate how analysis of the molecular records left in the genomes of the descendants of an individual mutagenized cell allows for genome-scale observations of fixation and segregation of mutations, as well as recombination events, in the single genome of their progenitor.Comment: 22 pages, 9 figures (including 5 supplementary), one tabl

    Genetic steps to organ laterality in zebrafish.

    Get PDF
    All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals

    Strong pressure-energy correlations in van der Waals liquids

    Get PDF
    Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy are found in the Lennard-Jones liquid and other simple liquids, but not in hydrogen-bonding liquids like methanol and water. The correlations, that are present also in the crystal and glass phases, reflect an effective inverse power-law repulsive potential dominating fluctuations, even at zero and slightly negative pressure. In experimental data for supercritical Argon, the correlations are found to be approximately 96%. Consequences for viscous liquid dynamics are discussed.Comment: Phys. Rev. Lett., in pres

    Determination of the Bending Rigidity of Graphene via Electrostatic Actuation of Buckled Membranes

    Get PDF
    The small mass and atomic-scale thickness of graphene membranes make them highly suitable for nanoelectromechanical devices such as e.g. mass sensors, high frequency resonators or memory elements. Although only atomically thick, many of the mechanical properties of graphene membranes can be described by classical continuum mechanics. An important parameter for predicting the performance and linearity of graphene nanoelectromechanical devices as well as for describing ripple formation and other properties such as electron scattering mechanisms, is the bending rigidity, {\kappa}. In spite of the importance of this parameter it has so far only been estimated indirectly for monolayer graphene from the phonon spectrum of graphite, estimated from AFM measurements or predicted from ab initio calculations or bond-order potential models. Here, we employ a new approach to the experimental determination of {\kappa} by exploiting the snap-through instability in pre-buckled graphene membranes. We demonstrate the reproducible fabrication of convex buckled graphene membranes by controlling the thermal stress during the fabrication procedure and show the abrupt switching from convex to concave geometry that occurs when electrostatic pressure is applied via an underlying gate electrode. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.515+2035.5^{+20}_{-15} eV. Monolayers have significantly lower {\kappa} than bilayers

    Ergodicity criteria for non-expanding transformations of 2-adic spheres

    Full text link
    In the paper, we obtain necessary and sufficient conditions for ergodicity (with respect to the normalized Haar measure) of discrete dynamical systems on 2-adic spheres S2r(a)\mathbf S_{2^{-r}}(a) of radius 2r2^{-r}, r1r\ge 1, centered at some point aa from the ultrametric space of 2-adic integers Z2\mathbb Z_2. The map f ⁣:Z2Z2f\colon\mathbb Z_2\to\mathbb Z_2 is assumed to be non-expanding and measure-preserving; that is, ff satisfies a Lipschitz condition with a constant 1 with respect to the 2-adic metric, and ff preserves a natural probability measure on Z2\mathbb Z_2, the Haar measure μ2\mu_2 on Z2\mathbb Z_2 which is normalized so that μ2(Z2)=1\mu_2(\mathbb Z_2)=1
    corecore