595 research outputs found

    The importance of planetary rotation period for ocean heat transport

    Get PDF
    The climate, and hence potential habitability, of a planet crucially depends on how its atmospheric and oceanic circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modelling the dynamics of their atmospheres whilst dramatically simplifying the treatment of the oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet having no continental barriers, which is a configuration which dramatically changes the oceanic dynamics. Here the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier – the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability

    Regionalisation of Northern Territory land councils

    No full text
    The dispersal of the powers exercised and functions performed by the two major land councils has been a subject of debate and recommendations on a number of occasions since the Aboriginal Land Rights (Northern Territory) Act 1976 came into effect. The Reeves Review of the Act in 1998, and the subsequent Inquiry into that Review by the House of Representatives Standing Committee on Aboriginal and Torres Strait Islander Affairs (HORSCATSIA) this year, have raised the issue to prominence again and ensured that it will be dealt with in the coming round of statutory amendments. This Discussion Paper considers the steps that have been taken towards regionalisation under the current provisions of the Act, and compares models for further regionalisation proposed by David Martin, the two land councils, and HORSCATSIA. These proposals, while more moderate than that of Reeves in that they all presume the continued existence of the Northern and Central Land Councils, differ on a number of points. Regionalisation within, or outside, the existing land council structures, provision for local initiative in seeking devolution, and the role of the Minister, are among the matters at issue in an attempt to secure both increased local or regional autonomy and improved land council efficiency. Funding of regionalised bodies also demands attention, given the criticisms directed at this aspect of the Reeves model. This paper goes on to express concern that regionalisation has been accepted as a selfevidently desirable policy, and that insufficient critical attention has been paid to the advantages expected to flow from its implementation. We begin our critique by distinguishing between ‘administrative’ regionalisation and ‘decision-making’ regionalisation of land council functions and powers. We then separate out the real process of decision-making from the formal act of decision-taking in the scheme of the Act. Most importantly, we point to the already localised character of decisions by traditional owners under the informed consent provisions, and argue that the primary danger posed by regionalisation is that the regional decision-takers will trespass upon the decision-making prerogatives of the traditional owners. While in our view this problem is a threat to the fundamental distribution of authority under the existing Act, and is sufficiently serious to call into question the rationale for moves towards greater regionalisation, the breadth of opinion, including local Aboriginal sentiment, in favour of more localised autonomy, needs to be accommodated. We therefore argue for a number of measures in mitigation. Establishing regional areas of sufficiently large size, each represented by a committee or council of sufficiently small size, and serviced, in the case of internal land council regionalisation, by professional staff employed through the central organisation, are steps intended to protect the informed consent procedures of the Act. Some formal certification witnessing the adequacy of those procedures in each case should also be introduced as part of the conditions attaching to the affixing of the land council common seal to agreements. As only some of these measures are available in the case of independent, or ‘breakaway’, land councils, some caution is due in approving more of these, especially in assessing the spread and depth of popular support

    Surface salinity of the North Atlantic : can we reconstruct its fluctuations over the last one hundred years ?

    Get PDF
    Surface samples have been collected in the North Atlantic in the past one hundred years for determining the ocean salinity and its temperature. A large share of the data we have used were collected by merchant vessels of weather ships of European countries and to a large extent are listed in reports, in particular in the "Bulletin Hydrographique". We investigate whether these data are relevant for determining low frequency fluctuations of the sea surface salinity. We find many crossing in the 1920s for which salinity is anomalously high compared with the climatology or with other crossings collected on the same ship line. These anomalies are indicative of a contamination of the sample. By examining hydrographic data, reports and recent experience in collectionand storage in sea water, we can attribute these large errors to unclean buckets where salt crystals dissolve into the sample and to breathing of the samples during the storage. Each of these stages contributes in estimating a too large salinity and adds to the scatter of the measurements. (D'après résumé d'auteur

    Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data.

    No full text
    An analysis of ocean volume, heat and freshwater transports from a fully con-strained general circulation model is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to a large-scale, time varying global ocean data set over six years. Time-mean fluxes estimated from this fully time-dependent circulation have converged with independent time-independent estimates from box inversions over most parts of the world ocean but especially in the southern hemisphere. However, heat transport estimates differ substantially in the North Atlantic where our estimates result in only 1/2 previous heat transports. The estimated mean circulation around Australia involves a net volume flux of 14 Sv through the Indonesian Through flow and the Mozambique Channel. In addition we show that this flow regime exist on all time scales above one month rendering the variability in the South Pacific strongly coupled to the Indian Ocean. Moreover, the dynamically consistent variations in the model show temporal variability of oceanic heat fluxes, heat storage and atmospheric exchanges that are complex and with a strong dependence upon location, depth, and time-scale. Results presented demonstrate the great potential of an ocean /state estimation system to provide a dynamical description of the time-dependent observed heat transport and heat content changes and their relation to air-sea interactions

    The Global ocean circulation during 1992-1997, estimated from ocean observations and a general circulation model

    No full text
    We discuss the three-dimensional oceanic state estimated for the period 1992- 1997 as it results from bringing together large-scale ocean data sets with a general circulation model. To bring the model into close agreement with ocean data, its initial temperature and salinity conditions where changed as well as the time-dependent surface fluxes of momentum, heat and freshwater. Resulting changes of those control fields are largely consistent with accepted uncertainties in the hydrographic climatology and meteorological analyses. Our results show that the assimilation procedure is able to correct for the traditional shortcomings of the flow field by changing the surface boundary conditions. Changes of the resulting flow field are predominantly on the gyre scale and affect many features which are often poorly simulated in traditional numerical simulations, such as the strengths of the Gulf Stream and its extension, the Azores Current and the anticyclonic circulation associated with the Labrador Sea. A detailed test of the results and their consistency with prior error assumptions shows that the constrained model has moved considerably closer to those observations which have been imposed as constraints, but also to independent data from the World Ocean Circulation Experiment not used in the assimilation procedure. In some regions where the comparisons remain indeterminate, not enough ocean observations are available. And in such situations, it is difficult to ascribe the residuals to either the model or the observations. We conclude from this experiment that we can find an acceptable solution to the global time-dependent ocean state estimation problem. As the estimates improve through the evolution of numerical models, computer power increases, and better assimilation schemes, improved and routine estimates will become possible

    Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model

    Get PDF
    In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%–20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    Ocean mixedlayer depth: A subsurface proxy for ocean-atmosphere variability

    Get PDF
    A new criterion, based on the shallowest extreme curvature of near surface layer density or temperature profiles, is established for demarking the mixed layer depth, h mix. Using historical global hydrographic profile data, including conductivity-temperature-depth and expendable bathythermograph data obtained during World Ocean Circulation Experiment, its seasonal variability and monthly to interannual anomalies are computed. Unlike the more commonly used Δ criterion, the new criterion is able to deal with both different vertical resolutions of the data set and a large variety of observed stratification profiles. For about two thirds of the profiles our algorithm produces an h mix/c that is more reliable than the one of the Δ criterion. The uncertainty for h mix/c is ±5 m for high- (<5 m) and ±8 m for low- (<20 m) resolution profiles. A quality index, QImix, which compares the variance of a profile above h mix to the variance to a depth of 1.5 × h mix, shows that for the 70% of the profile data for which a clearly recognizable well-mixed zone exists near the surface, our criterion identifies the depth of the well-mixed zone in all cases. The standard deviation of anomalous monthly h mix/c is typically 20–70% of the long-term mean h mix/c . In the tropical Pacific the monthly mean anomalies of h mix/c are not well correlated with anomalies of sea surface temperature, which indicate that a variety of turbulent processes, other than surface heat fluxes, are important in the upper ocean there. Comparisons between observed h mix/c and Massachusetts Institute of Techonology/ocean general circulation model/Estimating the Circulation and Climate of the Ocean model simulated mixed layer depth indicate that the KPP algorithm captures in general a 30% smaller mixed layer depth than observed

    A new twist on PIFE: photoisomerisation-related fluorescence enhancement

    Get PDF
    PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.Comment: No Comment
    • …
    corecore