361 research outputs found

    Beyond Robotic Wastelands of Time: Abandoned Pedagogical Agents and New Pedalled Pedagogies

    Get PDF
    Chatbots, known as pedagogical agents in educational settings, have a long history of use, beginning with Alan Turing’s work. Since then online chatbots have become embedded into the fabric of technology. Yet understandings of these technologies are inchoate and often untheorised. Integration of chatbots into educational settings over the past five years suggests an increase in interest in the ways in which chatbots might be adopted and adapted for teaching and learning. This article draws on historical literature and theories that to date have largely been ignored in order to (re)contextualise two studies that used responsive evaluation to examine the use of pedagogical agents in education. Findings suggest that emotional interactions with pedagogical agents are intrinsic to a user’s sense of trust, and that truthfulness, personalisation and emotional engagement are vital when using pedagogical agents to enhance online learning. Such findings need to be considered in the light of ways in which notions of learning are being redefined in the academy and the extent to which new literacies and new technologies are being pedalled as pedagogies in ways that undermine what higher education is, is for, and what learning means

    The impact of the demographic transition on dengue in Thailand: Insights from a statistical analysis and mathematical modeling

    Get PDF
    Background: An increase in the average age of dengue hemorrhagic fever (DHF) cases has been reported in Thailand. The cause of this increase is not known. Possible explanations include a reduction in transmission due to declining mosquito populations, declining contact between human and mosquito, and changes in reporting. We propose that a demographic shift toward lower birth and death rates has reduced dengue transmission and lengthened the interval between large epidemics. Methods and Findings: Using data from each of the 72 provinces of Thailand, we looked for associations between force of infection (a measure of hazard, defined as the rate per capita at which susceptible individuals become infected) and demographic and climactic variables. We estimated the force of infection from the age distribution of cases from 1985 to 2005. We find that the force of infection has declined by 2% each year since a peak in the late 1970s and early 1980s. Contrary to recent findings suggesting that the incidence of DHF has increased in Thailand, we find a small but statistically significant decline in DHF incidence since 1985 in a majority of provinces. The strongest predictor of the change in force of infection and the mean force of infection is the median age of the population. Using mathematical simulations of dengue transmission we show that a reduced birth rate and a shift in the population's age structure can explain the shift in the age distribution of cases, reduction of the force of infection, and increase in the periodicity of multiannual oscillations of DHF incidence in the absence of other changes. Conclusions: Lower birth and death rates decrease the flow of susceptible individuals into the population and increase the longevity of immune individuals. The increase in the proportion of the population that is immune increases the likelihood that an infectious mosquito will feed on an immune individual, reducing the force of infection. Though the force of infection has decreased by half, we find that the critical vaccination fraction has not changed significantly, declining from an average of 85% to 80%. Clinical guidelines should consider the impact of continued increases in the age of dengue cases in Thailand. Countries in the region lagging behind Thailand in the demographic transition may experience the same increase as their population ages. The impact of demographic changes on the force of infection has been hypothesized for other diseases, but, to our knowledge, this is the first observation of this phenomenon

    A Methodological Framework for the Evaluation of Syndromic Surveillance Systems: A Case Study of England

    Get PDF
    Background: Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. Methods: We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Results: Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different types outbreaks with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. Conclusions: The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response

    Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.

    Get PDF
    The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another

    Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study

    Get PDF
    Background: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. Methods: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. Findings: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0–18% for no vaccination, 0–33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0–72% for three-department campaigns, and 35–100% for nationwide campaigns. Two-department campaigns averted a median of 12–58% of infections, three-department campaigns averted 29–80% of infections, and national campaigns averted 58–95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0–95% and the proportion of cases averted to 37–86%. Interpretation: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. Funding: Bill &amp; Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health

    Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control

    Get PDF
    There is great interest in the dynamics of health behaviors in social networks and how they affect collective public health outcomes, but measuring population health behaviors over time and space requires substantial resources. Here, we use publicly available data from 101,853 users of online social media collected over a time period of almost six months to measure the spatio-temporal sentiment towards a new vaccine. We validated our approach by identifying a strong correlation between sentiments expressed online and CDC- estimated vaccination rates by region. Analysis of the network of opinionated users showed that information flows more often between users who share the same sentiments - and less often between users who do not share the same sentiments - than expected by chance alone. We also found that most communities are dominated by either positive or negative sentiments towards the novel vaccine. Simulations of infectious disease transmission show that if clusters of negative vaccine sentiments lead to clusters of unprotected individuals, the likelihood of disease outbreaks are greatly increased. Online social media provide unprecedented access to data allowing for inexpensive and efficient tools to identify target areas for intervention efforts and to evaluate their effectiveness.Comment: Accepted for publication in PLoS Computational Biolog

    Modeling infectious disease dynamics in the complex landscape of global health.

    Get PDF
    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health
    corecore