301 research outputs found

    Gas phase characterization of the noncovalent quaternary structure of Cholera toxin and the Cholera toxin B subunit pentamer

    Get PDF
    Cholera toxin (CTx) is an AB5 cytotonic protein that has medical relevance in cholera and as a novel mucosal adjuvant. Here, we report an analysis of the noncovalent homopentameric complex of CTx B chain (CTx B5) using electrospray ionization triple quadrupole mass spectrometry and tandem mass spectrometry and the analysis of the noncovalent hexameric holotoxin usingelectrospray ionization time-of-flight mass spectrometry over a range of pH values that correlate with those encountered by this toxin after cellular uptake. We show that noncovalent interactions within the toxin assemblies were maintained under both acidic and neutral conditions in the gas phase. However, unlike the related Escherichia coli Shiga-like toxin B5 pentamer (SLTx B), the CTx B5 pentamer was stable at low pH, indicating that additional interactions must be present within the latter. Structural comparison of the CTx B monomer interface reveals an additional α-helix that is absent in the SLTx B monomer. In silico energy calculations support interactions between this helix and the adjacent monomer. These data provide insight into the apparent stabilization of CTx B relative to SLTx B

    Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis

    Get PDF
    Intestinal goblet cells maintain the protective epithelial barrier through mucus secretion and yet sample lumenal substances for immune processing through formation of goblet cell associated antigen passages (GAPs). The cellular biology of GAPs and how these divergent processes are balanced and regulated by goblet cells remains unknown. Using high-resolution light and electron microscopy, we found that in mice, GAPs were formed by an acetylcholine (ACh)-dependent endocytic event remarkable for delivery of fluid-phase cargo retrograde into the trans-golgi network and across the cell by transcytosis - in addition to the expected transport of fluid-phase cargo by endosomes to multi-vesicular bodies and lysosomes. While ACh also induced goblet cells to secrete mucins, ACh-induced GAP formation and mucin secretion were functionally independent and mediated by different receptors and signaling pathways, enabling goblet cells to differentially regulate these processes to accommodate the dynamically changing demands of the mucosal environment for barrier maintenance and sampling of lumenal substances

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    The Chicken Yolk Sac IgY Receptor, a Mammalian Mannose Receptor Family Member, Transcytoses IgY across Polarized Epithelial Cells

    Get PDF
    In mammals the transfer of passive immunity from mother to young is mediated by the MHC-related receptor FcRn, which transports maternal IgG across epithelial cell barriers. In birds, maternal IgY in egg yolk is transferred across the yolk sac to passively immunize chicks during gestation and early independent life. The chicken yolk sac IgY receptor (FcRY) is the ortholog of the mammalian phospholipase A2 receptor, a mannose receptor family member, rather than an FcRn or MHC homolog. FcRn and FcRY both exhibit ligand binding at the acidic pH of endosomes and ligand release at the slightly basic pH of blood. Here we show that FcRY expressed in polarized mammalian epithelial cells functioned in endocytosis, bidirectional transcytosis, and recycling of chicken FcY/IgY. Confocal immunofluorescence studies demonstrated that IgY binding and endocytosis occurred at acidic but not basic pH, mimicking pH-dependent uptake of IgG by FcRn. Colocalization studies showed FcRY-mediated internalization via clathrin-coated pits and transport involving early and recycling endosomes. Disruption of microtubules partially inhibited apical-to-basolateral and basolateral-to-apical transcytosis, but not recycling, suggesting the use of different trafficking machinery. Our results represent the first cell biological evidence of functional equivalence between FcRY and FcRn and provide an intriguing example of how evolution can give rise to systems in which similar biological requirements in different species are satisfied utilizing distinct protein folds

    The Psychopathology and Neuroanatomical Markers of Depression in Early Psychosis

    Get PDF
    Depression frequently occurs in first-episode psychosis (FEP) and predicts longer-term negative outcomes. It is possible that this depression is seen primarily in a distinct subgroup, which if identified could allow targeted treatments. We hypothesize that patients with recent-onset psychosis (ROP) and comorbid depression would be identifiable by symptoms and neuroanatomical features similar to those seen in recent-onset depression (ROD). Data were extracted from the multisite PRONIA study: 154 ROP patients (FEP within 3 months of treatment onset), of whom 83 were depressed (ROP+D) and 71 who were not depressed (ROP-D), 146 ROD patients, and 265 healthy controls (HC). Analyses included a (1) principal component analysis that established the similar symptom structure of depression in ROD and ROP+D, (2) supervised machine learning (ML) classification with repeated nested cross-validation based on depressive symptoms separating ROD vs ROP+D, which achieved a balanced accuracy (BAC) of 51%, and (3) neuroanatomical ML-based classification, using regions of interest generated from ROD subjects, which identified BAC of 50% (no better than chance) for separation of ROP+D vs ROP-D. We conclude that depression at a symptom level is broadly similar with or without psychosis status in recent-onset disorders; however, this is not driven by a separable depressed subgroup in FEP. Depression may be intrinsic to early stages of psychotic disorder, and thus treating depression could produce widespread benefit

    Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices.

    Get PDF
    The technological success of phase-change materials in the field of data storage and functional systems stems from their distinctive electronic and structural peculiarities on the nanoscale. Recently, superlattice structures have been demonstrated to dramatically improve the optical and electrical performances of these chalcogenide based phase-change materials. In this perspective, unravelling the atomistic structure that originates the improvements in switching time and switching energy is paramount in order to design nanoscale structures with even enhanced functional properties. This study reveals a high- resolution atomistic insight of the [GeTe/Sb2Te3] interfacial structure by means of Extended X-Ray Absorption Fine Structure spectroscopy and Transmission Electron Microscopy. Based on our results we propose a consistent novel structure for this kind of chalcogenide superlattices

    Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    Get PDF
    BACKGROUND AND PURPOSE: The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. EXPERIMENTAL APPROACH: HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl(-) secretion by measuring short-circuit current (I(SC)) and tracer fluxes of (22)Na(+) and (36)Cl(-). Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na(+)/K(+)-ATPase and intracellular cAMP levels (ELISA) were measured. KEY RESULTS: In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced I(SC) within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced I(SC) was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na(+)/K(+)-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na(+)/K(+)-ATPase. CONCLUSION AND IMPLICATIONS: Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na(+)/K(+)-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea
    corecore