1,356 research outputs found
Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease
Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD
TYROBP genetic variants in early-onset Alzheimer's disease
We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression
The impact of sound field systems on learning and attention in elementary school classrooms
Purpose: An evaluation of the installation and use of sound field systems (SFS) was carried out to investigate their impact on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers and experimental testing of students with and without the use of SFS. Students ’ perceptions of classroom environments and objective data evaluating change in performance on cognitive and academic assessments with amplification over a six month period are reported. Results: Teachers were positive about the use of SFS in improving children’s listening and attention to verbal instructions. Over time students in amplified classrooms did not differ from those in nonamplified classrooms in their reports of listening conditions, nor did their performance differ in measures of numeracy, reading or spelling. Use of SFS in the classrooms resulted in significantly larger gains in performance in the number of correct items on the nonverbal measure of speed of processing and the measure of listening comprehension. Analysis controlling for classroom acoustics indicated that students ’ listening comprehension score
Diagnostic accuracy of consensus diagnostic criteria for frontotemporal dementia in a memory clinic population
Background/Aims: The goal of the present study was to evaluate the diagnostic accuracy of the core diagnostic criteria for frontotemporal dementia (FTD) [Neary D, et al: Neurology 1998;51:1546-1554] within a memory clinic population. Methods: The 5 core diagnostic criteria for FTD were operationalised in an informant-based written questionnaire. For a diagnosis of FTD the total clinical picture was weighted with findings on additional investigations and possible exclusion criteria, with follow-up of at least 1 year. Results: The operationalised core criteria for FTD had a sensitivity of 79% (95% CI = 57-92) and a specificity of 90% (95% CI = 85-94). Conclusion: The core diagnostic criteria for FTD applied in a caregiver questionnaire have good diagnostic accuracy among subjects without advanced dementia attending a memory clinic. This stresses the importance of the informant-based history in the differential diagnosis of dementia. Copyrigh
The complex genetics of gait speed:Genome-wide meta-analysis approach
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging
Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain
Background Biological pathways that significantly contribute to sporadic
Alzheimer’s disease are largely unknown and cannot be observed directly.
Cognitive symptoms appear only decades after the molecular disease onset,
further complicating analyses. As a consequence, molecular research is often
restricted to late-stage post-mortem studies of brain tissue. However, the
disease process is expected to trigger numerous cellular signaling pathways
and modulate the local and systemic environment, and resulting changes in
secreted signaling molecules carry information about otherwise inaccessible
pathological processes. Results To access this information we probed relative
levels of close to 600 secreted signaling proteins from patients’ blood
samples using antibody microarrays and mapped disease-specific molecular
networks. Using these networks as seeds we then employed independent genome
and transcriptome data sets to corroborate potential pathogenic pathways.
Conclusions We identified Growth-Differentiation Factor (GDF) signaling as a
novel Alzheimer’s disease-relevant pathway supported by in vivo and in vitro
follow-up experiments, demonstrating the existence of a highly informative
link between cellular pathology and changes in circulatory signaling proteins
Diagnostic and economic evaluation of new biomarkers for Alzheimer's disease: the research protocol of a prospective cohort study
Doc number: 72 Abstract Background: New research criteria for the diagnosis of Alzheimer's disease (AD) have recently been developed to enable an early diagnosis of AD pathophysiology by relying on emerging biomarkers. To enable efficient allocation of health care resources, evidence is needed to support decision makers on the adoption of emerging biomarkers in clinical practice. The research goals are to 1) assess the diagnostic test accuracy of current clinical diagnostic work-up and emerging biomarkers in MRI, PET and CSF, 2) perform a cost-consequence analysis and 3) assess long-term cost-effectiveness by an economic model. Methods/design: In a cohort design 241 consecutive patients suspected of having a primary neurodegenerative disease are approached in four academic memory clinics and followed for two years. Clinical data and data on quality of life, costs and emerging biomarkers are gathered. Diagnostic test accuracy is determined by relating the clinical practice and new research criteria diagnoses to a reference diagnosis. The clinical practice diagnosis at baseline is reflected by a consensus procedure among experts using clinical information only (no biomarkers). The diagnosis based on the new research criteria is reflected by decision rules that combine clinical and biomarker information. The reference diagnosis is determined by a consensus procedure among experts based on clinical information on the course of symptoms over a two-year time period. A decision analytic model is built combining available evidence from different resources among which (accuracy) results from the study, literature and expert opinion to assess long-term cost-effectiveness of the emerging biomarkers. Discussion: Several other multi-centre trials study the relative value of new biomarkers for early evaluation of AD and related disorders. The uniqueness of this study is the assessment of resource utilization and quality of life to enable an economic evaluation. The study results are generalizable to a population of patients who are referred to a memory clinic due to their memory problems. Trial registration: NCT0145089
Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease?
Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical individuals and target potentially disease-modifying therapies towards them. Current neuroimaging and biomarker research is strongly focused in this direction, with the aim of establishing AD fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive fingerprints for incipient AD are virtually non-existent as diagnostics and outcomes measures are still focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain overlaps substantially with the regions affected by AD in both animal models and humans. Notably, spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests and could enable a more uniform, global approach towards cognitive fingerprints of AD and better cognitive treatment outcome measures in future multicentre trials. The current Review appraises the available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and confirmed AD and identifies research gaps and future research priorities
Untreated Type 2 Diabetes and Its Complications Are Associated With Subcortical Infarctions
OBJECTIVE - To investigate the association of type 2 diabetes with subcortical infarctions. RESEARCH DESIGN AND METHODS - We investigated this association in subjects with type 2 diabetes (case subjects; n = 93) and without type 2 diabetes (control subjects; n = 186), matched by age, sex, and years of education. Participants were a subset of the Mayo Clinic Study of Aging (median age 79 years) who had undergone magnetic resonance imaging. RESULTS - The frequency of subcortical infarctions was 39% in case subjects and 29% in control subjects (odds ratio 1.59 [95% CI 0.91-2.75]). The association was stronger in case subjects without treatment (2.60 [1.11- 6.08]) and in case subjects with diabetes-related complications (1.96 [1.02-3.74]) compared with control subjects. CONCLUSIONS - These findings suggest that untreated type 2 diabetes and type 2 diabetes with complications are associated with subcortical infarctions. © 2011 by the American Diabetes Association
- …
