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Abstract  

Detection of incipient Alzheimer disease (AD) pathophysiology is critical to identify preclinical 

individuals and target potentially disease-modifying therapies towards them. Current neuroimaging 

and biomarker research is strongly focused in this direction, with the aim of establishing AD 

fingerprints to identify individuals at high risk of developing this disease. By contrast, cognitive 

fingerprints for incipient AD are virtually nonexistent as diagnostics and outcomes measures are still 

focused on episodic memory deficits as the gold standard for AD, despite their low sensitivity and 

specificity for identifying at-risk individuals. This Review highlights a novel feature of cognitive 

evaluation for incipient AD by focusing on spatial navigation and orientation deficits, which are 

increasingly shown to be present in at-risk individuals. Importantly, the navigation system in the brain 

overlaps substantially with the regions affected by AD in both animal models and humans. Notably, 

spatial navigation has fewer verbal, cultural and educational biases than current cognitive tests, and 

could enable a more uniform, global approach towards cognitive fingerprints of AD and better 

cognitive treatment outcome measures in future multicentre trials. The current Review appraises the 

available evidence for spatial navigation and/or orientation deficits in preclinical, prodromal and 

confirmed AD, as well as identifying research gaps and future research priorities. 
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[H1] Introduction 

Alzheimer disease (AD) is the most common form of dementia, with increasing worldwide 

prevalence1,2. Accurate early diagnosis is crucial as it provides the chance to intervene at an early 

stage before substantial neuronal death occurs. This approach is particularly relevant in an era in 

which research is focused on the efficacy of upcoming pharmacological3–5 and non-pharmacological 

prevention and treatment strategies6, which might allow intervention when neuronal loss is at its 

minimum to stop or delay the progress of the pathophysiology.  

 

Current ‘gold standard’ clinical diagnostic and outcome measures for AD are strongly focused on 

episodic memory7. Episodic memory loss is one of the most common features of AD and is 

considered the most sensitive and specific cognitive marker of underlying AD pathophysiology8. 

However, it is becoming increasingly clear that decline in memory is so common in healthy ageing 

that early detection of incipient AD pathophysiology is difficult9, which in turn often delays diagnosis 

as clinicians schedule follow-up appointments in an attempt to confirm a progressive decline in 

memory performance. The situation is further complicated by the fact that other brain diseases,10–12 

such as frontotemporal dementia (FTD), can manifest with substantial memory deficits, despite 

having a different underlying pathology13.  

 

Given this limited specificity of episodic memory deficits for incipient underlying AD 

pathophysiology, a new approach is required. Emerging data reveals that spatial navigation and 

orientation deficits have higher specificity than episodic memory in distinguishing AD from other 

dementias, particularly FTD14,15. More specifically, in animal studies AD pathophysiology has been 

shown to affect navigation-specific brain areas before episodic memory areas are affected16. Further, 

healthy older adults do not experience topographical disorientation in well-known environments, 

which contrasts starkly with the spatial disorientation seen in early AD1718. Finally, analysis of spatial 

performance allows better translation of animal intervention studies to human clinical trials as 

conceptualization of episodic memory is difficult to apply to nonhuman species19. Despite these 

highly promising findings, the utility of such spatial navigation deficits for diagnosis in preclinical 
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individuals with a high genetic risk of AD or with mild cognitive impairment (MCI) [G] remains 

underexplored20,21. The current Review appraises the available evidence for spatial navigation deficits 

in preclinical, prodromal and confirmed AD, as well as identifying research gaps and future research 

priorities. 

 

[H1] AD diagnosis and criteria 

[H3] Diagnostic criteria 

According to the National Institute on Aging (2011), AD diagnostic criteria include a history of 

worsening amnestic and nonamnestic symptoms in the visuospatial, language and executive function 

domains that reflect the amyloid-β (Aβ) burden and neurodegeneration in the brain22. Positive test 

results for cerebrospinal fluid (CSF) biomarkers and PET amyloid imaging increase confidence in the 

clinical diagnosis and predict AD progression from prodromal stages23. Importantly, Aβ plaque 

deposition has been observed in post-mortem evaluations of individuals who were not judged to be 

symptomatic in their lifetime24,25, highlighting the complexity of the underlying AD pathology and 

time lag to clinical manifestation . A further complication is that biomarkers are not brain region-

specific, and do not equate to clinical outcomes or have real-life symptom relevance for patients26,27. 

Thus, the role of cognitive evaluations is important in the early diagnostic process and has great 

potential to complement established biomarkers. Given that the amnestic syndrome continues to 

appear as a ‘core’ criterion to support diagnosis of the most typical form of AD, we discuss the issues 

surrounding the use of memory tests in clinical settings below (for atypical AD see elsewhere28).  

 

[H3] Neuropathology over the lifetime  

At a biological level, AD clinical symptoms are associated with the accumulation of extracellular Aβ 

plaques and intracellular tau tangles, leading to neuronal apoptosis. The extracellular deposition of Aβ 

plaques usually occurs first in prefrontal brain regions but becomes widespread over the cortex even 

in healthy ageing. By contrast, the intraneuronal neurofibrillary tangles of tau protein show a highly 

specific spreading pattern through the brain in AD29. Typically, tangles first develop in the most 

superficial cellular layer of the transentorhinal cortex (Braak & Del Tredici Stage I) advancing to the 
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entorhinal cortex and Ammon's horn in the hippocampus (Stage II), later spreading to the amygdala, 

the anterodorsal thalamic nucleus and the rest of the hippocampal formation (Stage III). Finally, tau 

tangles continue to spread to neighbouring regions within the cerebral cortex causing neocortical 

atrophy23 (Stages IV–VI). The interaction of Aβ and tau leads to progressive neuronal loss, which in 

turn is believed to underlie AD symptomology, such as forgetfulness, disorientation and confusion28. 

The reason for the pronounced directional expansion of the tau pathological process in typical AD as 

well as the tau– Aβ interplay is still unknown. 

 

[H3] Limitations of episodic memory for AD diagnosis 

Given that patients with AD present with profound symptoms of forgetfulness and substantial Aβ load 

in the medial temporal lobe (MTL), it is not surprising that episodic memory is currently the gold 

standard for diagnosing probable AD7. Indeed, patients with substantial memory problems are highly 

likely to have underlying AD pathology. However, the reliance on episodic memory deficits for 

diagnosis in the prodromal or even preclinical stages is problematic, because episodic memory peaks 

in very early adulthood30 and progressively declines with normal ageing. Indeed, diagnosis can be 

challenging in people >75 years of age, in whom memory and associated MTL structures show 

considerable age-related changes not due to pathophysiological processes31. As a result, cognitive 

decline in  healthy older people >75 years might have been considerably underestimated by 

longitudinal studies32. Moreover, delayed recall ability, one of the current main cognitive diagnostic 

indicators of AD, progressively declines in healthy adults aged ≥65 years33, highlighting the potential 

difficulties with the sensitivity of episodic memory to diagnose and predict AD pathophysiology in an 

older population. Similarly, as mentioned above, it is becoming increasingly recognised that patients 

with other forms of dementia can also show significant episodic memory problems. For example, 

FTD subtypes — such as the behavioural variant of FTD (bvFTD) — often manifest with similar 

deficits of episodic memory as AD, even for pathologically confirmed cases of bvFTD12,34–36, which 

can make the differential diagnosis difficult9,13,15,37. Differential diagnosis is important when 

determining the underlying pathology and choosing the correct treatment strategy to manage 

symptoms. An early and differential diagnosis is particularly problematic for patients with AD who 
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exhibit neuropsychiatric symptoms, who can be very difficult to clinically distinguish from patients 

with bvFTD37. 

 

Unlike episodic memory impairments, spatial navigation or orientation problems are rarely reported in 

healthy older adults38 or non-AD dementias, and experimental studies have shown that spatial 

navigational paradigms that are independent of mnemonic process can differentiate patients with AD 

from individuals with other dementias and healthy control groups14,39. This finding is not surprising 

given that the neuropathology of AD starts in the entorhinal areas, which are crucial for successful 

navigation16,40–43. This evidence raises the question as to whether such symptoms might be more 

sensitive and specific to underlying AD pathophysiology, even at a preclinical (that is, pre-memory 

symptom onset) stage. In the following sections, we briefly introduce current knowledge of navigation 

strategies and their neural correlates before reviewing the evidence in normal ageing and AD.  

 

[H1] Spatial navigation 

[H3] Navigation strategies  

Spatial navigation is the process of determining and maintaining a trajectory between different points 

in our environment. Successful navigation relies on two co-dependent strategies: allocentric and 

egocentric navigation. These strategies use different types of spatial reference frames but are highly 

correlated44 (Figure 1). 

 

Egocentric strategies [G]  are generally used when the same route is followed over and over again45,46. 

These self-centred navigation frames encode spatial information from the viewpoint of the person 

navigating to form an internal representation that is based on a sequence of bodily movements. This 

sequence of movements allows the navigator to maintain their route-goal trajectory relatively free of 

conscious control. Perceptual processing is required, as available visual input, bodily distance from 

landmarks, sensorimotor and vestibular knowledge about position in space and self-motion are all 

utilised as navigational cues. The temporal order in which environmental stimuli are encountered is 
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important and facilitates the landmark-based behavioural responses that are stored in spatial memory 

(for example, turn left at a supermarket and right at the lights).  

 

On the other hand, when traveling a lesser known or novel route, spatial representations of sequential 

bodily movements are not available, and allocentric, world-centred strategies are employed instead. 

Allocentric strategies [G] are based on the navigator’s perception of landmark positions relative to 

other landmarks. These positions are memorised and estimated by the navigator, contributing to an 

internal representation or ‘cognitive map’ that enables an individual to plan shorter routes regardless 

of their starting point46,47. Allocentric representations of self-location are updated by self-motion on 

the basis of visual, auditory, vestibular and proprioceptive information48,49, in a process known as path 

integration. This process has a pivotal role in an individual’s ability to successfully maintain 

movement through the environment42,50.  

 

The ability to use environmental landmarks to navigate also relies on the translation of egocentric to 

allocentric information (for example ‘I am 20 meters from the church’ to ‘the supermarket is to the 

left of the church’) and vice versa. For example, when one’s location in an environment has been 

determined, the navigation system calculates subsequent routes on the basis of a combination of 

egocentric and allocentric information. For instance, self-motion, distance travelled, head direction 

during the journey51, and temporal order of observed stimuli are combined across navigation frames. 

This strategic translation between allocentric and egocentric reference frames is a core determinant of 

one’s navigational ability and might be of particular importance for detecting very early signs of 

disorientation by clinical examination.  

 

Thus, egocentric and allocentric navigation strategies integrate for optimal performance in daily 

functioning and are associated with a network of brain regions that operate conjointly but can also be 

dissociated from each other 52. Indeed, successful navigation can be achieved by employing just one 

of these navigation processes at a time. For example, employing only egocentric navigation, it is 

possible to go from one landmark to another without knowing the relationship between landmarks 



8 

 

(allocentric information), as the overall path might be stored in a series of visual snapshots or scene 

memories53,54. Similarly, egocentric navigation is also not required for allocentric navigation. When 

walking from one’s house to the garden, the ability to measure bodily distance from landmarks 

(egocentric strategy) might not be necessary if a cognitive representation of the spatial trajectory 

already exists. Such a dissociation is often employed in experimental navigation tests by asking 

participants to remember locations on the basis of direction information while background cues are 

rotated or removed54–56. Evidence also suggests inter-individual differences for navigation preference, 

such that individuals preferentially choose specific strategies or reference frames when attempting to 

solve spatial tasks52. Outside the experimental paradigm, however, the human navigation system 

encourages the natural interaction (or strategic translation) of egocentric and allocentric strategies and, 

therefore, it is important to identify translational impairment in the clinical setting.  

 

[H3] Neural correlates of spatial navigation 

Advances in the field have shown that a large network of brain regions, involving MTL regions 

(hippocampus, entorhinal cortex and parahippocampal cortex57), parietal lobe regions (posterior 

cingulate, precuneus58 and retrosplenial cortex (RSC)59,60), frontal lobe regions61, and subcortical 

structures (caudate nucleus46 and thalamus 62,63) underlie our ability to navigate (Figure 2). 

Electrophysiological recordings in freely moving rodents offered the original insights into spatially 

tuned neurons that independently code for various aspects of navigation such as place location, head 

direction, speed and environmental boundaries. Likewise, in humans these sophisticated cells together 

form the neural architecture that underlies the navigation system.  

Allocentric navigation strategies are thought to be represented by highly selective cell ensembles 

commonly found in the hippocampal CA1 and CA3 regions of the MTL. These so-called ‘place cells’ 

contribute to the formation of cognitive maps of the environment, providing local information about 

one’s location within that environment. Both rodent and human models show that place cells become 

stable and more spatially restricted with repeated exposure to an environment (that is, as one becomes 

more familiar with the surrounding area). On the other hand, large-scale spatial information is 
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provided by grid cells located primarily in the medial entorhinal cortex, which can encode grid-like 

representations of distinct positions in space (self-location) and calculate routes between 

locations41,43,64. Grid cells represent a core component of the neural system that underlies path 

integration, as they also seem to measure ‘distance travelled’ akin to an odometer64,65.  

In addition, head direction cells (which were first identified in the postsubiculum of the rat) encode 

orientation in space and are activated whenever one is facing a certain direction (the reference 

direction 66 . Since their first discovery in rats, these cells have been found in the posterior parietal 

cortex, RSC, dorsal presubiculum, postsubiculum and anterior thalamus in humans [Au: OK?] 67,68. 

Boundary vector cells69 and cells coding specifically for self-motion (path integration)43,50,70, 

complement other spatial representations and together might be used to rapidly form goal-independent 

maps of the environment.  

Previous work suggests that the posterior cingulate region, RSC and precuneus have major roles in the 

integration of egocentric and allocentric spatial information streams71. For example, the rodent 

posterior cingulate receives dense direct hippocampal connections from the subiculum and is thus 

considered an integrative hub for projections from the hippocampus and anterior thalamic nuclei72. 

Interactions between the egocentric parietal and allocentric MTL systems are mediated by the 

RSC51,73–75 as it projects to the parahippocampal gyrus and other areas including the entorhinal cortex, 

presubiculum, thalamus and posterior parietal cortex.76,77 Moreover, the medial prefrontal cortex has 

been shown to receive information from the posterior parietal cortex and the hippocampus and may be 

involved in upstream processing of the spatial information generated 78,79. 

Functional imaging studies in rodents and humans have shown that the RSC is a major contributor to 

navigational performance, especially accurate path integration in darkness80, recognizing permanent 

environmental objects59, binding together multiple cues within the environment71, and encoding and 

storing spatial information72. In healthy individuals, the RSC responds selectively to environmental 

objects with high permanence such as telephone booths or street lights59,81. However, self-reported 

‘poor navigators’ show reduced retrosplenial cortex activation in response to high-permanence 

landmarks and have more difficulty estimating object permanency compared with self-reported ‘good 
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navigators’60. Moreover, the functional connectivity between the RSC and anterior thalamus nuclei is 

reduced in poor navigators60, consistent with the literature from rodent studies63. The ability to 

recognise permanent objects in the environment is a general skill required to make appropriate 

decisions related to navigation, thus emphasising the important role, within the wider posterior 

cingulate region, of the RSC in spatial navigation. Understanding spatial navigation performance in 

healthy individuals is a crucial starting point before inferences can be drawn about initial sites of 

functional abnormality in patients with AD or preclinical individuals. 

 

[H3] Ageing and spatial navigation         

The majority of research on spatial navigation in normal ageing supports a general consensus that 

human and rodent navigational ability, especially allocentric processing,82,83 declines with age18,84,85. 

Reduced resting-state blood flow86, long-term potentiation of rodent synaptic function87, and 

decreased hippocampal volumes in humans88 are some of the mechanisms that underpin this gradual 

decline. Along with these age-related neural changes, deficits in place learning83, perception of self-

motion, 89and retrieval of spatial memories90 have been reported in humans. Based on rodent studies, 

such navigational errors are believed to be a consequence of computational changes within neural 

circuits of the medial prefrontal cortex and CA1 and CA3 regions of the hippocampus91. These age-

related changes give rise to deficits in spatial working memory as well as difficulties maintaining and 

retrieving allocentric representations.91,92 Interestingly, reduced allocentric processing, mostly related 

to spatial memory (that is, encoding and retrieval of route trajectories and environmental maps) is 

suggested to lead to a compensatory shift toward egocentric or path integration navigational 

processes, as they do not rely on memory per se84,93. This idea is consistent with the finding that older 

adults between 60-80 years of age actually outperform younger adults on egocentric94 and allocentric 

distance tasks for example, manually adjusting the length of a line until its length matches the distance 

of a target 95. The preservation of these spatial processes in healthy ageing might therefore have 

important implications for the effective discrimination of age-related and AD-related decline in 
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navigational ability84, and also has implications for navigational rehabilitation strategies for AD in the 

future.  

 

[H1] Spatial navigation as a diagnostic tool  

Early identification — based on navigational difficulties — of individuals who are likely to develop 

AD is currently complicated by the challenges of measuring different features of spatial navigation in 

humans. Reliable tests of spatial navigation that are suitable for clinical settings across centres and 

different patient populations are still in development, as most experimental tests are not feasible for 

clinical evaluation. Validated, simple visuospatial tests such as the widely used Mental Rotation 

Test96 and the Money Road Map test97 have been shown to be poor predictors of navigational 

abilities98,99 and cognitive decline100. Newly developed virtual reality or real-world tests of spatial 

cognition have proven more sensitive in identifying spatial navigation deficits in patient populations. 

In particular, virtual reality testing can be applied as an alternative to real-world reality tests (that are 

difficult to administer with space constraints in clinical settings) to measure navigational abilities in 

younger and older age groups101, patients with MCI and early AD102. These computer-generated 

virtual environments provide tightly controlled testing conditions and also enable manipulation of 

navigational parameters, such as landmark availability and navigation complexity. The adoption of 

tablet computers by clinical services for cognitive testing will make the testing of spatial navigation 

deficits more sophisticated and sensitive in everyday clinical practice. Furthermore, extraction of 

critical features from these virtual reality tests might enable development of further pencil & paper or 

bedside assessments. 

 

[H3] Early AD  

Previous studies using virtual reality techniques have shown that spatial disorientation in patients with 

AD typically includes both egocentric and allocentric impairments linked to widespread 

neurodegeneration in medial temporal, parietal and frontal brain regions17,103–106 (Figure 2). In 

accordance with these findings, both types of navigational strategy have been found to be impaired in 
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early AD dementia, alongside impairments in the translation of both reference frames105 and the 

ability to construct novel scenes from spatial and contextual information, which is dependent on 

posterior parietal regions such as the supramarginal and angular gyrus 106. Virtual reality studies found 

that patients with early AD were unable to store an allocentric viewpoint-independent representation 

and to synchronize this representation with the allocentric viewpoint dependent representation (e.g., 

memorize the position of the plant and retrieve the plant’s position from a different location)17 

probably as a result of reduced hippocampal neuronal density particularly in CA1 and CA3 

subregions107. Egocentric impairments are also present, mainly as a result of hypometabolism and 

structural medial parietal changes, which are signature features of AD108. Surprisingly, these medial 

parietal changes and associated egocentric impairments have been much less investigated in AD, 

despite having potentially much higher specificity for AD pathology. Indeed, retrosplenial (Brodmann 

areas 29 and 30) volumetric changes have been shown to efficiently distinguish AD from FTD, even 

in patients with similar hippocampal atrophy 14,109.  

As noted above, patients with AD also experience difficulty translating between allocentric and 

egocentric reference frames, a function that strongly correlates with RSC and posterior cingulate 

dysfunction and has been shown to distinguish AD from FTD14,105 . Given the role of the RSC in 

integrating different navigational frames, orientation and visual information from the occipital lobes, 

its dysfunction in early AD is in agreement with deficits in translation between allocentric and 

egocentric representations that occur at early clinical stages of the disease and are highly specific to 

underlying AD pathophysiology110. For this reason, the RSC is often considered an initial site of 

functional abnormality in patients with AD or in preclinical individuals. 

 

[H3] Prodromal AD and MCI      

Similar to early AD, patients with MCI often show spatial navigation impairments111. Although the 

exact trajectory from MCI to AD is still under discussion112, a large number of studies show 

functional and structural changes in the MTL and parietal cortex in patients with MCI18,108,113–116. 
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Investigations of egocentric and allocentric memory in individuals with amnestic MCI (aMCI) 

indicate that these patients have substantial volume reductions in the hippocampus, right-sided 

precuneus and inferior parietal cortex, and are severely impaired at learning both allocentric and 

egocentric tasks108. Indeed, path integration in spatial navigation tests is substantially impaired among 

prodromal cohorts and might represent a cognitive marker for AD117. Furthermore, a study employing 

a human real-life version of the Morris water maze [G]  found that patients with AD had problems 

navigating and using both allocentric and egocentric orientation; aMCI groups were more severely 

impaired on allocentric trials111, probably due to the stronger emphasis on memory in these trials118.  

Interestingly, genetic vulnerability interacts with aMCI to influence spatial navigation performance. 

The apolipoprotein E ε4 allele (APOE ε4), which is a known genetic risk factor for AD, has 

high prevalence but low penetrance in the population, with a threefold increased risk of 

developing AD in APOE ε3/ε4 heterozygotes and a tenfold increased risk in APOE ε4/ε4 

homozygotes compared with APOE ε4 non-carriers (see genetics section later, and for more 

details see elsewhere119. On a computerised human analogue of the Morris water maze test (Hidden 

Goal Task), aMCI APOE ε4 homozygous carriers are poorer on all spatial navigation subtasks, 

including allocentric (hippocampus-dependent) and egocentric subtasks, compared with aMCI APOE 

ε4 heterozygous carriers120. 

Despite the strong focus on MTL contributions to navigational deficits in AD, findings suggest an 

increasingly important role for the posterior cingulate cortex and RSC; these areas are affected early 

in the course of AD121 and in patients at early MCI stages122,123, especially those who then progress to 

AD116,122,124,125. However, questions around the contributions of the RSC and associated posterior 

cingulate areas to spatial navigation deficits in early AD remain unanswered. In addition, whether 

changes in the RSC reflect a compensatory mechanism that occurs as a result of early AD pathology 

in the transentorhinal cortex and hippocampus at the microscopic level remains unclear. Such a 

finding would not be surprising, however, as the entorhinal cortex has a strong anatomical connection 

with the RSC126. 
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[H3] Preclinical AD           

Although evidence is emerging that spatial navigation is impaired in early AD and MCI, its integrity 

in preclinical populations is less well understood. Various attempts have been made to determine 

spatial neural and cognitive biomarkers in individuals as young as 45 years who have an elevated 

sporadic or genetic risk of progressing to AD 127. Preclinical investigations have reported functional 

MRI abnormalities in the resting-state default mode network, including reduced functional 

connectivity in posterior cingulate cortices and precuneus regions128,129, both of which underlie 

egocentric ability and egocentric to allocentric translation. 

Studies in sporadic preclinical AD have partially relied on CSF Aβ levels. For example, a study from 

201620 investigated spatial navigation as a marker for AD, using two non-immersive desktop virtual 

maze environments for allocentric and egocentric conditions. Individuals were considered preclinical 

if they had low CSF Aβ levels (<500 pg/ml)130, with no cognitive deficits. Selective deficits in 

allocentric strategy among preclinical individuals were reported relative to individuals with a normal 

Aβ level in the CSF (>500 pg/ml). Despite allocentric acquisition impairments, the preclinical group 

retained sufficient information to solve the wayfinding task. However, the exact contribution of 

decreased CSF Aβ levels to impairment of allocentric and egocentric processing is uncertain, as 

increasing evidence suggests that the tau protein has a critical role in the generation of cognitive 

deficits 131,132. Experiments in aged transgenic mice expressing human tau  suggest that the interaction 

of reduced excitatory grid cell firing in the dorsal medial entorhinal cortex and increased activity of 

inhibitory cells in response to enhanced theta oscillations results in the spatial memory deficits seen in 

early AD16. This finding links the destabilization of grid cell fields (which code for route trajectories 

and update spatial information) with the earliest stage of tau pathology. The significance of this 

finding in relation to preclinical AD, however, remains to be determined (see Figure 3) 

In human studies, preclinical individuals carrying mutations in the presenilin 1 and amyloid precursor 

protein genes show entorhinal and posterior cingulate cortical thickness changes up to 8 years before 



15 

 

disease onset133. However, to our knowledge, spatial navigational ability has not been investigated in 

these particular preclinical patients. These predictive MRI findings underline the strong need for 

longitudinal investigations to examine the sensitivity of cortical thickness changes as neural markers 

for AD and the manifestation of spatial navigation disparities for predicting later conversion to MCI 

and early AD.  

Most navigation studies in cohorts of patients with genetic risk factors for AD have been conducted 

with APOE-genotyped individuals. The association between the APOE ε4 allele and AD risk has 

spurred a growing number of studies investigating the cognitive and neurophysiological effect of 

APOE ε4 in younger 18-24 year olds,134,135 middle-aged 40-60 year olds 136–139 and elderly 60-90 year 

old individuals 140 adults, also in relation to spatial performance and hippocampal volume120. 

 

A study examined a possible link between APOE ε4 and spatial navigation in genetically at-risk 

young healthy adults. Reduced grid-cell-like representation was observed in APOE ε3/ε4 carriers 

compared with APOE ε3/ε3 individuals, suggesting functional (but no structural) differences between 

young APOE ε4 carriers and non-carriers. Grid-cell representations were temporally unstable in young 

adult carriers as functional connectivity between the right entorhinal cortex and hippocampus was 

impaired, leading to a behavioural preference to navigate along the border of the virtual environment. 

The authors proposed a potential compensatory mechanism of the hippocampus due to neuronal loss 

in the entorhinal cortex and reduced grid-cell representations which enabled young adult carriers to 

navigate successfully and complete the task 21,141. Clearly, preclinical cohorts are of great interest for 

future navigation research in AD pathophysiology, not only for individuals at genetic risk, but also for 

sporadic high-risk groups. 

 

An alternative approach is to investigate preclinical cognitive forms of AD via healthy elderly 

participants who have significant memory concerns (SMCs) [G] but do not reach cut-offs for 

objective memory impairment on standard neuropsychological measures. Such SMCs are a potential 

harbinger of AD pathology142. However, it should be emphasised that no gold standard tool currently 
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exists to identify SMCs, and no threshold values to suggest clinically relevant SMCs have been 

established. Unsurprisingly, few studies have explored spatial navigation in SMC cohorts111. 

However, evidence does suggest a positive association between amyloid pathology, genetic risk of 

AD, entorhinal cortex integrity and SMCs143,144, which might ignite new interest in whether SMCs and 

navigational difficulties are comorbid among genetically at-risk cohorts.  

 

[H1] Conclusions 

This review underscores the presence of spatial navigation impairments in early AD and its prodromal 

and preclinical forms. The evidence reviewed clearly highlights the great potential of spatial navigation 

and orientation deficits as diagnostic measures and predictors of incipient AD pathophysiology. The 

findings should not be surprising as MTL and posterior parietal regions, which constitute the core 

network for navigation, are highly susceptible to AD pathophysiology even in the prodromal and 

preclinical stages of the disease. An urgent need exists to revisit the notion that episodic memory should 

be the gold standard for early AD diagnosis and outcome intervention studies. Specifically, the literature 

indicates that spatial navigation deficits can identify individuals at risk of developing AD, which has 

obvious implications for clinical practice. For example, routine assessment of spatial navigation 

complaints should be considered a priority in memory clinics38. If subjective complaints are present, 

particularly when accompanied by behavioural symptoms that manifest as everyday difficulties 

navigating previously familiar routes and/or using public transport, the patient should be considered at 

high risk of developing AD. Identification of incipient AD might provide an earlier opportunity to begin 

potentially disease-modifying treatment before more substantial and deadly brain changes occur. 

Spatial navigation parameters could also have an important role in animal to human translational 

research. Drug development for AD has been hampered by the failure to replicate success in animal 

models (tested with spatial navigation measures) in phase II or III clinical trials. A 3-month open-

label study has shown that a computerized human analogue of the Morris water maze has the potential 

to measure the effects of donepezil in mild AD145. Subsequent research has shown that the disruptive 
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effect of scopolamine on place navigation can be reverted by donepezil, a finding that was 

demonstrated using both rodent and human versions of the Morris water maze146.  

The past few years have seen a considerable shift in interest towards patients with prodromal AD, and 

some of the conventional neuropsychological tests for AD might be subject to a ceiling effect in these 

patients. Only a few subtests of current measures have the potential to show differences in the effects 

of drugs and placebo in patients with prodromal AD or MCI. Therefore, spatial navigation, as a 

sensitive and specific marker of AD, presents a window of opportunity in these patients. Furthermore, 

in the era of cross-cultural clinical trials, tests that are independent of language and culture (such as 

those for spatial navigation) facilitate comparison across research sites. 

From a social care perspective, the findings presented offer important information for dementia care 

organisations. Disorientation leads to patients getting lost in everyday environments, resulting in 

distress for patients and family members and often the involvement of the emergency services and in 

extreme cases leading to death from exposure. Thus, the identification of individuals with spatial 

navigation deficits might enable better safeguarding to be put in place for those individuals. 

Despite clear clinical applications of the research, spatial navigation has several limitations as a 

diagnostic tool for AD. One major question is whether spatial deficits occur before episodic memory 

deficits or whether both deficits manifest concurrently in humans. Navigation and orientation tests can 

only be considered superior to episodic memory tests if they are shown to be more sensitive and 

specific for AD pathology. However, given that the normal ageing process will probably give rise to 

complaints around memory of past events, as opposed to ability to navigate and orientate oneself in 

space, disorientation should be further investigated as a potentially more valuable (specific) marker to 

distinguish pathological ageing from normal ageing. This rationale leads to a pressing need to develop 

a standardized and validated diagnostic spatial test battery that does not rely on topographical 

memory. These tests might also be used as a clinical diagnostic tool and outcome marker in upcoming 

treatment efficacy trials, as current navigation tools are limited and not standardized across research 

centres. Given the multifactorial nature of the navigation system, such a battery of tests should 

consider not only mnemonic processes, but also higher mental functions mediated by the frontal lobe 
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such as planning, motivation and maintenance of spatial representations that influence navigational 

ability. This approach is especially important when considering a differential diagnosis, for example, 

between AD and FTD syndromes.  

Importantly, spatial navigation studies in AD might be limited in their comparability, as many of the 

studies predate the publication of robust diagnostic criteria for AD7. As a result, the potential for 

mixed or other forms of dementia to confound an established cohort of patients with AD cannot be 

ruled out. It is also difficult to say with certainty that cut-off points for disease staging (preclinical, 

early MCI, late MCI) are consistent across studies published before the 2014 guidelines7. In addition, 

heterogeneity in the definition of patient cohorts and differences in spatial navigation paradigms and 

testing procedures have created inconsistencies across studies.  

The current lack of epidemiological data from healthy populations for spatial navigation is a further 

obstacle. Inter-individual differences in spatial navigation remain elusive, with no population-level 

data available to rectify conflicting ideas around, for example, sex differences in navigational 

abilities. One notable exception is the launch of Sea Hero Quest (http://www.seaheroquest.com), an 

online mobile game to measure spatial navigation (Box 1). To date (April 2018), Sea Hero Quest has 

been played by over 3.7 million people, in 193 countries between the ages of 19 and 95 years132. 

Initial results from Sea Hero Quest show that not only age but also gender and cultural background 

have a substantial effect on navigation behaviour, which clearly needs to be investigated further147. 

There is considerable scope to use the data from the game to create the first population benchmarks 

for healthy navigation abilities across ages, gender and countries. Benchmark scores will allow us to 

develop easy-to-administer, sensitive spatial navigation tools validated against benchmark population 

data and also to relate it to real-life navigation problems that patients encounter. Already, navigational 

pattern changes, in preclinical groups defined as genetically-at risk of AD, have been uncovered on 

Sea Hero Quest. This demonstrates the game’s utility to detect cognitive changes that precede the 

expected onset of AD Taken together, the presented evidence highlights the enormous potential of 

spatial navigation for AD diagnosis, which in turn could have a major impact on clinicians, patients 

and their families. 

http://www.seaheroquest.com/
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Key points 

 Episodic memory has limited utility as a diagnostic and outcome measure for preclinical AD 

 Spatial navigation deficits have the potential to detect underlying pathophysiology in 

preclinical AD  

 The brain areas affected earliest by AD pathophysiology are key nodes in the spatial 

navigation network 

 Genetically at-risk individuals show altered spatial navigation patterns before any episodic 

memory symptom onset  

 Spatial navigation emerges as a potential cost effective cognitive biomarker to detect AD in 

the preclinical stages, which has significant implications for future diagnostics and treatment 

approaches 

 Future spatial navigation benchmarks and standardisation of spatial navigation tests are 

needed to realise this goal 
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Box 1 | Sea Hero Quest 



35 

 

Sea Hero Quest (SHQ) is a mobile app-based cognitive task that enables the collection of spatial 

navigation data on a population level. SHQ has been downloaded by 3.7 million people in 193 

different countries worldwide. As people advance in the game, they face challenges in different 

navigation domains, including visuospatial skills, path integration, spatial short-term memory and 

allocentric and /or egocentric navigational strategy.  

Game performance can be divided into two main domains: wayfinding and egocentric path 

integration. In wayfinding levels, players are initially presented with a map indicating start location 

and the location of several checkpoints to find in a set order. The two variables of interest are 

trajectory distance and time taken to complete each level. In path integration levels, participants 

navigate along a river with bends to find a flare gun and then choose the correct direction back to the 

starting point from a choice of three options. Depending on their accuracy, players receive one, two or 

three stars. The game also controls for video gaming proficiency, which might otherwise bias 

performance by giving players familiar with similar games an advantage.  

Current preliminary findings for the population-level navigation data can be found here: 

https://www.biorxiv.org/content/early/2018/01/21/188870 

 

Glossary  

Allocentric Navigation Allocentric strategies are based on the navigator’s perception of landmark 

positions relative to other landmarks  

Egocentric Navigation Egocentric self-centred navigation frames encode spatial information from 

the viewpoint of the navigator 

Episodic memory Episodic memory refers to our memory of events represented by aspects of the 

past not present in other memories, such as the time, place, or social context. 

Mild Cognitive Impairment Mild cognitive impairment (MCI) is a prodromal or intermediate stage 

between the expected cognitive decline of normal aging and the more-serious decline of dementia.  

https://www.biorxiv.org/content/early/2018/01/21/188870
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Morris water maze: The Morris water maze is a test of spatial learning examining rodent ability to 

navigation from different starting locations around an open swimming arena to location a submerged 

escape platform using only distal cues. For more information see elsewhere148 

Subjective Cognitive Decline: Subjective Cognitive Decline (SCD) refers to a self-experienced 

persistent decline in cognitive abilities in comparison with a prior normal status and occurs in the 

absence of objective impairment on standardised neuropsychological tests 

 


