242 research outputs found

    RNAi induced knockdown of a cadherin-like protein (EF531715) does not affect toxicity of Cry34/35Ab1 or Cry3Aa to \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e larvae (Coleoptera: Chrysomelidae)

    Get PDF
    The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an important maize pest throughout most of the U.S. Corn Belt. Bacillus thuringiensis (Bt) insecticidal proteins including modified Cry3Aa and Cry34/35Ab1 have been expressed in transgenic maize to protect against WCR feeding damage. To date, there is limited information regarding the WCR midgut target sites for these proteins. In this study, we examined whether a cadherin-like gene from Diabrotica virgifera virgifera (DvvCad; Gen-Bank accession # EF531715) associated with WCR larval midgut tissue is necessary for Cry3Aa or Cry34/ 35Ab1 toxicity. Experiments were designed to examine the sensitivity of WCR to trypsin activated Cry3Aa and Cry34/35Ab1 after oral feeding of the DvvCad dsRNA to knockdown gene expression. Quantitative real-time PCR confirmed that DvvCad mRNA transcript levels were reduced in larvae treated with cadherin dsRNA. Relative cadherin expression by immunoblot analysis and nano-liquid chromatography–mass spectrometry (nanoLC-MS) of WCR neonate brush border membrane vesicle (BBMV) preparations exposed to DvvCad dsRNA confirmed reduced cadherin expression when compared to BBMV from untreated larvae. However, the larval mortality and growth inhibition of WCR neonates exposed to cadherin dsRNA for two days followed by feeding exposure to either Cry3Aa or Cry34/35Ab1 for four days was not significantly different to that observed in insects exposed to either Cry3Aa or Cry34/35Ab1 alone. In combination, these results suggest that cadherin is unlikely to be involved in the toxicity of Cry3Aa or Cry34/35Ab1 to WCR

    Need for Alloparental Care and Attitudes Toward Homosexuals in 58 Countries: Implications for the Kin Selection Hypothesis

    Get PDF
    Homosexuality is an evolutionary puzzle. Many theories attempt to explain how a trait undermining individual reproduction can be maintained, but experimental testing of their predictions remains scarce. The kin selection hypothesis (KSH) is an important theoretical framework to account for the evolution of human homosexuality, postulating that its direct cost to reproduction can be offset by inclusive fitness gains through alloparental assistance to kin. Consistent evidence in support of the KSH has only been garnered from research on Samoan fa’afafine (i.e. feminine, same-sex attracted males), whereas research in numerous industrialized societies has repeatedly failed to secure empirical support for the theory. Here, we propose an alternative test of the KSH by investigating how need for alloparental care influences women’s attitudes toward homosexuality (AtH). AtH would influence the likelihood of women receiving alloparental care from homosexual kin. We applied logistic regression analysis to a large dataset (17,295 women in 58 countries) derived from the World Values Survey. As predicted by the KSH, women who are potentially most in need of alloparental support exhibit significantly more positive attitudes toward homosexuals. For single mothers who expressed parental care concerns, each additional child mothered was associated with an increase of 1.24 in their odds of exhibiting positive attitudes toward homosexuals. Our study is the first to provide circumstantial evidence in support of the KSH on a global scale

    Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra

    Get PDF
    Much of the 191.8 Pg C in the upper 1 m of Arctic soil of Arctic soil organic mater is, or is at risk of, being released to the atmosphere as CO2 and/or CH4. Global warming will further alter the rate of emission of these gases to the atmosphere. Here we quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic. Soil temperature best predicts CH4 fluxes and explained 89% of the variability in CH4 emissions. Water table depth has a nonlinear impact on CH4 efflux. Increasing water table height above the surface retards CH4 efflux. Decreasing water table depth below the surface has a minor effect on CH4 release once an aerobic layer is formed at the surface. In contrast with several other studies, we found that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems

    Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling

    Get PDF
    BACKGROUND: In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS: Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE: Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition

    Structural diversity in free and bound states of intrinsically disordered protein phosphatase 1 regulators

    Get PDF
    Complete folding is not a prerequisite for protein function, as disordered and partially folded states of proteins frequently perform essential biological functions. In order to understand their functions at the molecular level, we utilized diverse experimental measurements to calculate ensemble models of three non-homologous, intrinsically disordered proteins: I-2, spinophilin and DARPP-32, which bind to and regulate protein phosphatase 1 (PP1). The models demonstrate that these proteins have dissimilar propensities for secondary and tertiary structure in their unbound forms. Direct comparison of these ensemble models with recently determined PP1 complex structures suggests a significant role for transient, pre-formed structure in the interactions of these proteins with PP1. Finally, we generated an ensemble model of partially disordered I-2 bound to PP1 that provides insight into the relationship between flexibility and biological function in this dynamic complex

    The Multivariate Normal Distribution

    No full text
    • …
    corecore